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R E S E A R C H A R T I C L E

Oral microbiome-driven virulence factors: A novel
approach to pancreatic cancer diagnosis
Xuemin Zeng1,2,3, Dapeng Ren1,2,3, Ran Liu1,2,3, Qiang Zhang1,2,3, Xiao Yan1,2,3, and Xiao Yuan1,2,3∗

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, often associated with a poor prognosis for patients. One
of the major challenges in managing PDAC is the difficulty in early diagnosis, owing to the limited and invasive nature of current
diagnostic methods. Recent studies have identified the oral microbiome as a potential source of noninvasive biomarkers for diseases,
including PDAC. In this study, we focused on leveraging the differential expression of virulence factors (VFs) encoded by the oral
microbiome to create a diagnostic tool for PDAC. We observed a higher alpha diversity in VF categories among PDAC patients compared
to healthy controls. We then identified a panel of VF categories that were significantly upregulated in PDAC patients, these being
associated with bacterial adherence, exoenzyme production, and nutritional/metabolic processes. Moreover, Streptococcus-derived VFs
were notably enriched in PDAC patients. We developed a diagnostic model using random forest analysis based on the levels of these
VFs. The model’s diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curve analysis, with an area under
the curve (AUC) of 0.88, indicating high accuracy in differentiating PDAC patients from healthy controls. Our findings suggest that VFs
encoded by the oral microbiome hold potential as diagnostic tools for PDAC, offering a non-invasive approach that could significantly
enhance early detection and prognosis, ultimately leading to improved patient outcomes.
Keywords: Pancreatic cancer, oral microbiome, virulence factors (VFs), non-invasive diagnostic, saliva.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) ranks among the
most lethal cancers, characterized by its aggressive nature
and poor patient prognosis [1–3]. The early detection of PDAC
remains a significant challenge due to the limited and inva-
sive nature of current diagnostic methods, with early detec-
tion being critical for improving patient outcomes [2, 3]. The
gut microbiota, consisting of trillions of microorganisms inhab-
iting the human intestines, and their composition and func-
tion have been closely linked to overall health and disease
development [4–6]. In recent years, emerging evidence suggests
the potential role of gut microbiota in the diagnosis and progno-
sis of various diseases, including PDAC [1, 7, 8].

Additionally, the oral microbiome, comprising a complex
ecosystem of bacteria, viruses, fungi, and other microorgan-
isms, is crucial for oral health and disease [4]. Emerging
evidence suggests that the oral microbiome plays a crucial
role in the pathogenesis of several diseases, including oral
and gastrointestinal cancers [9]. Understanding the interac-
tion between the oral microbiome and PDAC is paramount
for identifying potential diagnostic and therapeutic strategies.
Recent research has shed light on the potential of the oral
microbiome, the diverse community of microorganisms resid-
ing in the oral cavity, as a non-invasive source of biomarkers

for various diseases, including PDAC [4]. However, current
diagnostic accuracy using oral or gut microbiota is about 80%
(0.78–0.82), indicating a need for improvement [4].

In recent years, the focus has shifted toward understand-
ing the specific mechanisms by which these microorganisms
can induce pathogenic effects [10, 11]. One such mechanism
relies on the presence of virulence factors (VFs) encoded by
the microbial genome [12]. VFs are molecular components or
proteins produced by microorganisms that enhance their ability
to colonize and infect host tissues. However, utilizing VFs to
reflect the microbiome’s virulence characteristics for disease
diagnosis [13] poses feasibility challenges.

This study aims to investigate the association between PDAC
and VFs encoded by the oral microbiome, representing the first
characterization of VF features in the oral microbiome of PDAC
patients. Our study demonstrates the potential of utilizing the
VFs encoded by the oral microbiome as diagnostic biomarkers
for PDAC.

Materials and methods
Data collection
Nagata et al. [1] conducted a study in which 47 salivary sam-
ples were collected from patients diagnosed with PDAC, while
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Figure 1. The analysis workflow and core VF categories and individual VFs. (A) Data acquisition and processing workflow; (B) Relative abundance of VF
category; (C) Top ten relative abundance of VF across all samples. CTRL: Control; PDAC: Pancreatic ductal adenocarcinoma; VF: Virulence factor.

235 samples were obtained from healthy individuals as con-
trols. The authors considered potential confounding factors like
gender and age in both groups. Importantly, based on their
original P value, these confounding factors had limited impact
within the dataset we used [1]. Therefore, in our study, we did
not account for these factors due to their minimal influence on
our analysis. For data retrieval, we utilized the prefetch tool
v2.10.7 from the National Center for Biotechnology Information
(NCBI), allowing us to download the required datasets. Our
data collection and processing steps are outlined in Figure 1A,
providing a visual representation of the entire workflow.

Quality control of shotgun metagenomic sequence
To ensure sequencing data quality, we used Trimmomatic
v0.39 [14] for the removal of adapter sequences and low-quality
bases (using the following parameters, ILLUMINACLIP:
TruSeq3-PE-2.fa:2:30:10:8:true TRAILING:20 MINLEN:60, to
trim the ends of reads with a quality below 20; and MINLEN:60,
to discard any processed reads shorter than 60 base pairs).
This step involved precision trimming of adapter sequences, a
known source of potential contamination in sequencing data, as

well as the excision of low-quality bases that could compromise
downstream analysis. After quality control, the reads under-
went an additional processing step to remove human genomic
sequences using bowtie v2.4.4 [15] and the T2T-mY-rCRS
genome [16] (with hard-masked pseudoautosomal regions
[PARs] on chrY replaced with “N” and mitochondrion replaced
with revised Cambridge reference sequence [rCRS]), available
at https://github.com/marbl/CHM13. This approach aimed
to effectively remove any human genomic contamination,
particularly in saliva samples characterized by a high host
genomic content.

Virulence factor (VF) annotation
After eliminating human genomic sequences, we proceeded to
align the remaining reads against the VF database (VFDB) [10].
This database, available at http://www.mgc.ac.cn/VFs/main.
htm, provides a comprehensive collection of VFs. For the
alignment process, we employed bowtie v2.4.4 [15] and utilized
samtools v1.13 [17] for subsequent analysis. The alignment tool
(bowtie2) is optimal as it handles large datasets efficiently,
ensuring that even the subtlest of microbial sequences can
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be matched to known VFs. By aligning the reads against the
VFDB_setB_nt (http://www.mgc.ac.cn/VFs/download.htm),
we were able to identify the number of reads that corresponded
to VFs in each sample. To ensure accurate quantification of their
abundance, we implemented standardization measures: one
that accounts for the depth of sequencing in each sample—
a measure of the extent to which the microbial content has
been sampled—and another that adjusts for the length of
the VF genes identified. This dual-normalization process is
critical, as it compensates for both technical and biological
variance, allowing the comparative abundance of VFs across
samples to accurately reflect their genuine prevalence [18]. The
standardized relative abundance will be utilized in subsequent
analyses, providing a comprehensive understanding of the oral
microbiome-encoded VFs in PDAC.

Diagnostic model construction
We developed a random forest [19] classifier based on VFs
related to the oral microbiome for PDAC diagnosis. Our dataset
comprised genomic features associated with VFs, with the aim
of leveraging these features for accurate pancreatic cancer
diagnosis. Initially, we loaded the dataset, which contained
information on various genomic features and their correspond-
ing disease outcomes. To perform the analysis, we divided the
dataset into input features (X) and target variables (y), where
X represented the genomic features and y represented the dis-
ease outcomes. To ensure the selection of the most relevant
genomic features, we performed a correlation analysis. This
involved calculating Pearson correlation coefficients between
each feature and the target variable. The dataset was split into
a training set and a test set, using 80% of the data for training
the model and reserving 20% for evaluating its performance.
Subsequently, we constructed a random forest classifier, opti-
mizing parameters, such as the number of decision trees and
their maximum depth, to enhance model performance. The
classifier consisted of the trees to optimize the model’s per-
formance on the test set. We have determined through model
validation that a random forest comprising 100 trees strikes a
reasonable balance between predictive performance and com-
putational efficiency, and the maximum depth of trees was no
limit on tree depth. We evaluated the model’s effectiveness
using receiver operating characteristic (ROC) curves and cal-
culated the area under the curve (AUC) values. These metrics
provide a quantitative measure of the model’s classification
performance.

Statistical analysis
Statistical analyses were conducted using RStudio. Alpha diver-
sity measures, including Shannon and Simpson indices, were
calculated using the vegan package. The Bray–Curtis dissim-
ilarity index was computed directly on VF profiles. Principal
coordinate analysis (PCoA) was performed using ade4 [20],
and adonis analysis (vegan package) assessed group differ-
ences’ significance. Differential VF abundances were tested
using the Wilcoxon rank-sum test, with P values adjusted by
the Benjamini–Hochberg (BH) procedure, with a significance
threshold set at a P adjust value of <0.05. The ggplot2 package

was used for creating boxplots and PCoA plots. The pheatmap
package was utilized to construct heatmaps, visualizing the
patterns of VF abundances. ROC curves were generated using
the pROC package and were utilized to evaluate the perfor-
mance of diagnostic models.

Results
Core VF categories and individual VFs in oral microbiome of
PDAC patients
Our analysis workflow, as illustrated in Figure 1A, aimed to
determine the sequence abundance of VFs in all samples.
We categorized the identified VFs into 13 different categories,
and their relative abundances are presented in Figure 1B. Our
results revealed that the dominant VFs in the oral micro-
biome of PDAC patients are primarily categorized under
immune modulation (average abundance in controls and PDAC
patients: 45.84% and 40.38%, respectively), adherence (20.07%,
21.93%), exoenzyme (13.39%, 14.30%), stress survival (11.24%,
11.77%), and nutritional/metabolic (4.58%, 5.75%). These cate-
gories are followed by others (3.78%, 4.74%), regulation (0.41%,
0.44%), biofilm (0.23%, 0.34%), effector delivery system (0.17%,
0.15%), motility (0.13%, 0.13%), antimicrobial activity/compet-
itive advantage (0.11%, 0.11%), exotoxin (<0.1%, <0.1%), and
invasion (<0.1%, <0.1%). We also identified the top ten VFs
with the highest average relative abundance, predominantly
associated with Streptococcus, correlating with their increased
abundance in the oral cavity of PDAC patients.

PDAC patients have higher alpha diversity of VF categories
The alpha diversity, calculated using both Shannon and Simp-
son indices, based on both VF categories and VFs, found that
PDAC patients exhibited higher alpha diversity when consider-
ing the 13 VF categories. We found that for the Simpson index,
the P value was 0.0002317 and a P value of 0.0001268 for
the Shannon index (Figure 2A). This trend was not observed
in the analysis of individual VFs (Simpson: P = 0.1987, Shan-
non: P = 0.2936, Figure 2B). Overall, our findings suggest that
PDAC patients’ oral microbiome encodes a broader array of VFs,
potentially contributing to oral environment deterioration.

Differential abundance of VF categories and individual VFs
between PDAC and healthy controls
Subsequently, we calculated beta diversity based on both VF
categories and individual VFs. When considering the 13 VF cat-
egories, we did not observe significant differences in VF cate-
gory composition between PDAC patients and healthy controls
(P = 0.238, F = 1.3298, Figure 3A). We further investigated if
there were differences in VF categories. We identified four dif-
ferentially enriched VF categories, with three being enriched in
PDAC (adherence, exoenzyme, and nutritional/metabolic pro-
cesses) and one being enriched in healthy controls (immune
modulation). However, we observed differences in the com-
position of VFs (P = 0.048, F = 1.9423, Figure 3B). We fur-
ther identified differentially expressed VFs. As expected, we
found 13 significantly different VFs (P adjust < 0.05) associated
with Streptococcus. Among them, two VFs were upregulated in
PDAC, while 11 VFs were enriched in healthy controls. The above
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Figure 2. Alpha diversity based on (A) VF category and (B) individual VF. Simpson and Shannon indices were calculated. The central line within each
box represents the median value, while the top and bottom edges of the box depict the IQR, being the 75th and 25th percentiles, respectively. The points
that fall outside of this range represent the outliers within the dataset. CTRL: Control; PDAC: Pancreatic ductal adenocarcinoma; VF: Virulence factor; IQR:
Interquartile range.

results once again highlight the characteristics of the VF of oral
microbiome in PDAC patients.

VFs for PDAC diagnosis
The distinctive distribution of VFs in PDAC indicates their
potential as a new approach for diagnosing PDAC. To
achieve this, we developed a diagnostic model for PDAC
using VF profiles, employing a random forest model. In
Figure 4A, we showed the top 20 VFs in the model, includ-
ing the prominent ones like immunoglobulin A1 protease
(iga), fibronectin-binding protein-like protein A (pavA),
peptidylprolyl isomerase (slrA), G5 domain-containing protein
(iga), and trigger factor (tig/ropA). Our results demonstrated
high accuracy (AUROC = 0.88, Figure 4B) in diagnosing
pancreatic cancer, indicating that oral microbiota-encoded VFs
could serve as alternative biomarkers.

Discussion
Attention is now being directed to comprehending the precise
processes through which these microbes can cause disease. A

key method involves the production of VFs. The identification
and development of novel approaches for the early diagnosis of
PDAC are of most importance due to the aggressive nature and
poor prognosis of this disease [2]. In recent years, increasing
evidence suggests that the oral microbiome and its associated
VFs play a significant role in disease [21–23]. Most studies have
focused on the composition of the oral microbiome at the level
of species or strain, aiming to explain the differences between
disease and healthy cohorts at this taxonomic level. However,
limited research has been conducted on specific gene categories,
such as antibiotic resistance genes and VF genes, which could
provide novel insights. VFs are molecular properties, typically,
gene products, that empower microorganisms to colonize and
infect specific host species, thereby increasing their ability to
cause disease. These factors encompass a range of characteris-
tics, including bacterial toxins, cell surface proteins that facili-
tate bacterial attachment, protective cell surface carbohydrates,
and proteins, as well as hydrolytic enzymes that contribute
to the bacterium’s pathogenicity [10]. To characterize the VF
features of the oral microbiome in PDAC patients, we conducted
this study. First, we observed that the box-plot graphics lack
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Figure 3. Beta diversity based on Bray–Curtis dissimilarity index and differential (A) VF category and (B) individual VF. The P values were adjusted
using the BH procedure, with a significance threshold set at a P adjust value of <0.05. CTRL: Control; PDAC: Pancreatic ductal adenocarcinoma; VF: Virulence
factor; BH: Benjamini–Hochberg; PCOA: Principal coordinate analysis.

crucial descriptions for proper interpretation. For instance,
clarification is needed regarding the symbolism of the lines and
dots. We also observed a noticeable increase in alpha diversity,
specifically based on VF categories, in PDAC patients compared
to healthy controls. Furthermore, we identified a set of VF cate-
gories that exhibited significant upregulation in PDAC patients.
These categories were primarily associated with bacterial
adherence, exoenzyme production, and nutritional/metabolic
processes.

Importantly, our work evaluates the potential of oral
microbiome-driven VFs as a promising avenue for pancreatic
cancer diagnosis. This is particularly crucial given the typically
asymptomatic nature of early-stage PDAC and the demand for
noninvasive and cost-effective diagnostic tools. In a previous
study, the diagnostic accuracy of using the composition of gut
microbiota and oral microbiota for diagnosing PDAC ranged
from 0.78 to 0.82 [1]. However, in our study, our model achieved

a higher accuracy of 0.88, surpassing the accuracy of the pre-
vious models. We hypothesize that the inclusion of these VFs
provides a more dynamic and functionally relevant picture of
the microbiome’s role in the pathology. By integrating data
on VFs, the model is better equipped to infer the potential
pathogenic mechanisms and their direct implications for dis-
ease severity and patient outcomes. It is these attributes that
may offer a more precise and clinically relevant predictive
power.

Conclusion
Collectively, our study provides an initial comprehensive anal-
ysis of VF features within the oral microbiome of PDAC
patients. In the absence of such external validation, we still
believe that our findings yield valuable insights for the stud-
ied population and make a meaningful contribution to the
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Figure 4. Construction of the diagnostic model. (A) Identification of top 20 VFs contributing the most to the model; (B) Evaluation of the accuracy of the
diagnostic model. AUROC: Area under the receiver operating characteristic curve; VF: Virulence factor.

existing body of knowledge. We encourage other research
groups to apply our model to different datasets to further inves-
tigate its broader applicability and robustness. Additionally,
our research demonstrates the promising potential of utilizing
VF encoded by the oral microbiome as diagnostic biomarkers for
PDAC. It is important that VFs can also serve to monitor disease
progression and assess treatment response, like microorgan-
isms. The possibility of altering VFs as a therapeutic strategy
alongside traditional PDAC treatment is acknowledged, align-
ing with research suggesting that certain bacterial populations
may contribute to disease pathogenesis. The integration of
microbiome analysis into current clinical workflows, consider-
ing the technical challenges and the required standardization
before such tests can be widely adopted in clinical practice. We
believe that further investigation of the specific functions of
these VFs or their relationship to the long-term prognosis of
PDAC is needed.
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