Cuproptosis-related gene Lipt1 as a prognostic indicator in non-small cell lung cancer: Functional involvement and regulation of Atox1 expression

Ruiyun Deng1*, Lili Zhu1*, Jun Jiang2, Jing Chen3*, and Hua Li1*

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths, necessitating a deeper understanding of novel cell death pathways like cuproptosis. This study explored the relevance of cuproptosis-related genes in NSCLC and their potential prognostic significance. We analyzed the expression of 16 cuproptosis-related genes in 1017 NSCLC tumors and 578 Genotype-Tissue Expression (GTEx) normal samples from The Cancer Genome Atlas (TCGA) to identify significant genes. A risk model and prognostic nomogram were employed to identify the pivotal prognostic gene. Further in vitro experiments were conducted to investigate the functions of the identified genes in NSCLC cell lines. Lipt1, a gene encoding the enzyme lipooyltransferase 1, emerged as the central prognostic gene with decreased expression in NSCLC. Importantly, elevated Lipt1 levels were associated with a favorable prognosis for NSCLC patients. Overexpression of Lipt1 inhibited cell growth and enhanced apoptosis in NSCLC. We confirmed that Lipt1 downregulates the copper chaperone gene antioxidant 1 (Atox1), thereby impeding NSCLC progression. Our study identified Lipt1 as a valuable prognostic biomarker in NSCLC as it elucidates its tumor-inhibitory role through the modulation of Atox1. These findings offered insights into the potential therapeutic targeting of Lipt1 in NSCLC, contributing to a deeper understanding of this deadly disease.

Keywords: Non-small cell lung cancer (NSCLC), cuproptosis-related gene, lipooyltransferase 1 (Lipt1), prognostic indicator, antioxidant 1 (Atox1).

Introduction

About 85% of lung cancer cases are non-small cell lung cancer (NSCLC), highlighting its dominance as the main pathological category [1, 2]. Globally, NSCLC accounts for around 2 million new cases and 1.8 million deaths every year, making it a significant public health concern [3]. The primary etiology of NSCLC, among other factors, includes exposure to cigarette smoke, environmental pollution, and genetic predisposition [4]. Current treatment options for NSCLC consist of surgery, chemotherapy, immunotherapy, and others, whilst the prognosis depends on the stage at diagnosis and the molecular characteristics of the tumor [5, 6]. Despite advances in treatment strategies, the overall five-year survival rate remains relatively low, at approximately 15%–20% [7]. Given the high incidence and mortality of NSCLC, there is an essential need to discover novel targeted therapies concurrently with identifying diagnostic and prognostic markers. Such advancements are essential to mitigate the substantial health burden of NSCLC.

The trace element copper plays an important role in the body’s physiological functions and is involved in the activity of a number of enzymes, especially antioxidant enzymes, which are essential for maintaining normal cellular function and resistance to oxidative stress. Certain cancer types may cause elevated copper levels in the body, as some tumor cells have a greater need for copper, while cancer may prompt the body to release more copper. Patients with NSCLC may face a range of nutrition-related problems, such as loss of appetite, increased consumption, and impaired absorption, which may lead to deficiencies in trace elements such as copper [8]. Cuproptosis, or copper-mediated cell death, was first recognized in 2017 as a distinct mode of cell death, characterized by elevated toxic intracellular copper levels [9]. Unlike other cell death modalities, cuproptosis arises from elevated intracellular copper, which triggers oxidative stress and culminates in cell demise [10]. Recent breakthroughs in oncology emphasize the pivotal role of cuproptosis in both tumor development and therapeutic strategies [11]. For instance, studies on triple-negative breast cancer and glioblastoma cells exhibit increased sensitivity to copper-mediated cell death [12]. This sensitivity can be exploited therapeutically by utilizing copper-chelating agents or modulating copper transporters to selectively induce cuproptosis in cancer cells [13]. In the context of lung cancer, emerging studies suggest that cuproptosis may be important in disease progression and treatment response [14]. Some studies
have also demonstrated that lung cancer cells with elevated copper levels are more susceptible to cuproptosis, providing a potential therapeutic target [15]. Moreover, copper chelation therapy has demonstrated a favorable response in preclinical models of lung cancer, further supporting the importance of investigating cuproptosis in this malignancy [16]. Investigating cuproptosis in lung cancer offers potential breakthroughs in therapeutic approaches and deepens insights into the disease’s fundamental biology.

In our study, 16 cuproptosis-related genes were derived from the study by Chi et al. [17]. Through expression analysis, risk fundamentalbiology.

Materials and methods
Expression analysis and functional annotation of cuproptosis-related genes in NSCLC
The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga) is a comprehensive resource that provides genomic, epigenomic, transcriptomic, and proteomic data from a wide range of cancer types [18] and GTEx (https://gtexportal.org/) is a valuable database that contains gene expression data from healthy human tissues [19]. First, we analyzed the expression of 16 cuproptosis-related genes (ATP7A, DBT, ATP7B, DLAT, DLST, DLD, GLS, FDIX, GCSH, LIAS, LIPT1, LIPT2, LIPTI, MTF1, NLRP3, NFE2L2, and FDHB) in 1017 NSCLC tumor samples in the TCGA and 578 normal samples in the GTEx database. Second, 14 genes that demonstrated significant differential expression (P < 0.05) in NSCLC were further examined using the Search Tool for the Retrieval of Interacting Genes (STRING; https://string-db.org/) database and visualized through protein–protein interaction (PPI) networks utilizing the Cytoscape software. For functional enrichment analysis of these genes, the Enrichr database (https://maayanlab.cloud/Enrichr/) was employed to conduct both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The GO annotations included molecular function (MF), cellular component (CC), and biological process (BP). A P-value below 0.05 was deemed statistically significant.

Construction of a prognostic risk model for NSCLC using least absolute shrinkage and selection operator (LASSO) regression analysis
For the construction of a prognostic risk model for NSCLC, we preprocessed the gene expression data by normalization and centering. We then performed the LASSO regression method by using the “glmnet” package in R. This regression employed a coordinate gradient descent algorithm to fit the linear model. Optimal tuning parameter determination (λ) was achieved through 10-fold cross-validation, aiming for the minimum mean cross-validated error. The chosen optimal λ value that minimized the prediction’s mean squared error was set as λ = 0.0072. By using this, genes with non-zero coefficients were highlighted, signifying them as potential prognostic biomarkers for NSCLC. The subsequent risk score for each patient was derived using the following formula:

\[
\text{Risk score} = (0.0886 \times \text{ATP7B}) + (-0.3104 \times \text{DBT}) + (0.1172 \times \text{DLAT}) + (0.3005 \times \text{DLST}) + (0.2318 \times \text{FDIX}) + (0.009 \times \text{GCSH}) + (-0.0455 \times \text{GLS}) + (0.0149 \times \text{LIAS}) + (-0.1896 \times \text{LIPT1}) + (-0.1781 \times \text{LIPT2}) + (0.0113 \times \text{MTF1}) + (-0.0032 \times \text{NLRP3}) + (0.1026 \times \text{PDHB}).
\]

According to these scores, 1017 NSCLC tumor samples from TCGA were stratified into two groups: high risk (n = 457) and low risk (n = 458), based on the average risk score. The Kaplan–Meier survival curves were used to study disease-specific survival (DSS) and the log-rank test was used to determine statistical significance. Differences with a P < 0.05 were deemed statistically significant. In addition, a receiver operating characteristic (ROC) analysis was performed to gauge the prognostic accuracy of our model, with the area under the curve (AUC) evaluated at different time points (1 year, 3 years, and 5 years).

Univariate/multivariate Cox regression analysis for key prognostic gene identification in NSCLC
Univariate Cox regression analysis examines the effect of each predictor independently, while multivariate Cox regression analysis simultaneously considers the impact of multiple predictors on survival [20]. We applied univariate/multivariate Cox proportional hazards regression analysis to evaluate 13 prognostic genes identified in our risk model, along with pertinent clinical variables (age, pT-stage, pN-stage, pM-stage, and smoking history), in TCGA–NSCLC samples. Genes and clinical variables that were shown to be significant in both univariate and multivariate analyses were further investigated. Among them, LIPT1, a gene for lipoic transferase 1 enzyme, was notably represented using a prognostic nomogram for a comprehensive understanding.

Construction of a prognostic nomogram
We utilized the “rms” package in R software to construct the nomogram. This tool visually represents the predictive model, by assigning numerical values to each prognostic factor based on their contribution to the outcome [21]. These values are summed to derive the total points, which correlate with a specific probability of the clinical outcome. We assessed the nomogram’s accuracy through calibration and validation methods. In the calibrated nomogram, points are near the 45° line (calibration plot), which indicates strong agreement between forecasts and observations. Additionally, we performed internal validation using bootstrapping techniques to estimate the concordance index (C-index), which evaluates the nomogram’s discriminative ability.

Analysis of LIPT1 expression and its association with clinical features in NSCLC
Initially, we assessed the expression levels of LIPT1 across 1017 NSCLC tumor samples and 578 normal samples from the
TCGA and GTEx databases. By utilizing the Wilcoxon test, we identified a differential expression of LIPT1 between the tumor and normal samples. The subsequent prognostic evaluation was conducted using the Kaplan–Meier plotter database (http://kmplot.com/analysis/index.php?p=background), examining the influence of LIPT1 differential expression on overall survival (OS) and progression-free survival (PFS) of NSCLC patients. To further delve into the clinical implications of LIPT1 expression, we associated its levels with diverse clinical parameters, including gender, age, smoking status, ethnicity, T stage, N stage, M stage, and overall TNM classification. This association was statistically evaluated using the Kruskal–Wallis test, enabling us to discern the significance of LIPT1 expression across various clinical stratifications. To evaluate statistical significance for differences, \(P < 0.05 \) were employed.

Immune analysis in NSCLC based on LIPT1 expression

Investigating the tumor immune microenvironment (TIME) helps elucidate the mechanisms of tumor progression, immune evasion, and response to immunotherapy [22]. First, we divided 1017 TCGA samples into high-expression \((n = 509) \) and low-expression \((n = 508) \) groups according to LIPT1 expression. Second, we analyzed immune cell infiltration in two groups using the CIBERSORT method (https://cibersort.stanford.edu/) that allowed us to characterize the composition of immune cells in the tumor microenvironment [23]. Furthermore, we employed Spearman correlation analysis to evaluate the link between immune cell infiltration as determined by the EPIC algorithm (http://epic.gfellerlab.org) and LIPT1 expression in NSCLC. Third, we conducted an ICB response analysis to explore any association between LIPT1 level and the efficacy of immune checkpoint blockade (ICB) treatment. Finally, we examined the correlation between tumor mutational burden (TMB) and LIPT1 level by Spearman correlation analysis.

Cell culture and treatment

We used NSCLC cell lines (NCI-H1299, HCC827, and A549) and normal bronchial epithelial cells (BEAS-2B) from the ATCC. Thermo Fisher Scientific’s humidified incubator (37 °C, 5% CO\(_2\)) was used for cell cultivation in RPMI-1640 medium (Gibco, Thermo Fisher Scientific) accompanied with a 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin solution. Following cultivation, A549 and HCC827 cells underwent specific treatments. For the investigation of cellular responses to metal ion exposure, cells were treated with 10-\(\mu\)M concentration of copper solutions for 24 h. Simultaneously, a control group of cells was treated with PBS for the same duration to determine any nonspecific cellular reactions.

Cell transfection

A549 and HCC827 cells were seeded in 6-well plates and cultured for 24 h prior to transfection, allowing them to reach 70%-80% confluency. For overexpression studies, these cells were transfected with either the pcDNA3.1-LIPT1 vector (Eurofins Genomics) or the control empty pcDNA3.1 vector. For knockdown experiments, cells underwent transfection with small interfering RNA targeting antioxidant 1 gene (ATOX1) or its respective non-targeting control. All transfections were facilitated using the Lipofectamine 3000 Transfection Reagent (Invitrogen, Thermo Fisher Scientific).

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA from the samples was extracted using the RNeasy Mini Kit (Qiagen, https://www.qiagen.com/). Subsequent reverse transcription of the extracted total RNA into cDNA was achieved with the iScript cDNA Synthesis Kit (Bio-Rad, https://www.bio-rad.com/). qRT-PCR was performed on a real-time PCR system using the SYBR Green Master Mix (Applied Biosystems, Thermo Fisher Scientific). Specific primers for LIPT1, ATOX1, and GAPDH (which served as an internal control) were utilized. The primer sequences were as follows: LIPT1 forward, 5'-AGGCTCAAGTGACACGAC-3', LIPT1 reverse, 5'-GCTTCAGGAGGTAGT-3'; ATOX1 forward, 5'-CATCGCCGAACAGAGTT-3'; ATOX1 reverse 5'-CTTCAGGCTGCAAGACAG-3'; GAPDH forward, 5'-TTCAAGGGACACTGACAG-3'; GAPDH reverse, 5'-CTCAGCACCAGCACCAC-3'.

Western blotting assay

Cells were lysed using RIPA buffer containing phosophatase and protease inhibitors (Thermo Fisher Scientific). The concentration of protein in the lysates was determined using the BCA Protein Assay Kit (Pierce, Thermo Fisher Scientific). Equal protein amounts were then separated by 10% SDS-PAGE and subsequently transferred to PVDF membranes (Millipore). These membranes were blocked with 5% non-fat milk in TBST for 1 h at room temperature. Overnight incubation at 4 °C was carried out with primary antibodies against LIPT1, ATOX1, and GAPDH (all from Abcam, 1:2000 dilution). Following washes with TBST, membranes were exposed to HRP-linked secondary antibodies (1:5000, Cell Signaling Technology) for 1 h. Protein bands were visualized using the ECL detection system (Amersham Biosciences) and quantified using ImageJ (NIH), with normalization to GAPDH.

Cell Counting Kit-8 (CCK-8) assay

For CCK-8 testing, \(1 \times 10^4 \) cells were seeded into a 96-well plate and incubated for five days, whilst the assessments were performed daily. Each well received 10 μL of CCK-8 reagent from Dojindo Molecular Technologies in Japan at each time point. This was followed by 2-h incubation at 37 °C. To ascertain cell viability, the absorbance at 450 nm was observed by a microplate reader (BioTek Instruments, USA).

Transwell assay

In the transwell migration assay, cells suspended in serum-free media were seeded into the upper chamber of a Transwell insert (8-μm pore size, Corning, USA) laced in a 24-well plate. The lower chamber contained media and 10% FBS (Gibco, Thermo Fisher Scientific, USA) as a chemoattractant. The migrated cells under the membrane were fixed with 4% paraformaldehyde (Sigma-Aldrich, USA) for 15 min and stained with 0.1% DAPI (Sigma-Aldrich, USA) for 20 min following incubation. Non-migrated cells in the upper chamber were gently removed using a cotton swab. The stained, migrated cells were then observed and counted under a 200× inverted microscope (Olympus, Japan). The invasion assay
Different expression and functional analysis of cuproptosis-related genes in NSCLC

(A) Expression boxplots of the 16 cuproptosis-related genes in 1017 NSCLC tumor samples from TCGA and 578 normal samples from GTEx; (B) PPI network constructed to explore the connections between 14 significant cuproptosis-related genes with 13 nodes and 38 edges; (C) KEGG pathway analysis on 14 significant cuproptosis-related genes; (D) GO term analysis on 14 significant cuproptosis-related genes, including cellular component (CC), biological process (BP), and molecular function (MF). Bubble size represents the number of genes involved in the respective term and color intensity reflects the adjusted P-value. ***P < 0.001. NSCLC: Non-small cell lung cancer; GTEx: Genotype-tissue expression; TCGA: The Cancer Genome Atlas; KEGG: Kyoto Encyclopedia of Genes and Genome; GO: Gene Ontology; PPI: Protein–protein interaction.

was similarly conducted, with the addition of Matrigel in the upper chamber. For both assays, at least five random fields per insert were counted to determine the number of migrated and invading cells.

Flow cytometry
Cells were cultured in 6-well plates under the designated experimental conditions. Following treatment, they were collected, resuspended in the kit, and washed twice in cold phosphate-buffered saline (PBS). Next, 100 μL of the cell solution, containing 1×10^5 cells in a 5-mL culture tube, was mixed with 5 mL of Annexin V-FITC and 5 mL of propidium iodide (PI). After being gently vortexed, the samples were kept at room temperature in the dark for 15 min. Each tube received 400 μL of 1× binding buffer following the incubation, and the samples were then immediately analyzed using a BD FACScanto™ II Flow Cytometer (BD Biosciences, San Jose, CA, USA). The FlowJo™ program was used for data analysis (BD Biosciences, Ashland, OR, USA).

Statistical analysis
Experiments were mostly done in triplicate. Data are shown as mean ± SD. For two-group comparisons, student’s t-test was used. For multiple comparisons, we used one-way ANOVA followed by Tukey’s post-hoc test. Survival outcomes were gauged by the Kaplan–Meier method and the log-rank test. Spearman rank determined correlations. A P-value < 0.05 was deemed significant. SPSS software (version 25.0, IBM, USA) facilitated all analyses.

Results
Differential expression and functional analysis of cuproptosis-related genes in NSCLC
In our study, we analyzed the expression patterns of 16 genes associated with cuproptosis in a cohort of 1017 NSCLC tumor samples from TCGA and 578 normal tissue samples from the GTEx database. Among these genes, ATP7A and NFE2L2 did not display statistically significant differences in their expression levels between the tumor and normal samples. Conversely, the analysis revealed that 14 genes exhibited substantial differences in expression between NSCLC and normal tissue samples. These genes are ATP7B, DBT, DLD, DLAT, DLST, GCSH, FDX1, GLS, LIPT1, LIAS, LIPT2, NLRP3, MTF1, and PDHB (Figure 1A). To further explore these genes, we constructed a PPI network, which highlighted 13 nodes interconnected by 38 edges (Figure 1B). Functionally, these genes correlated with KEGG pathways like pyruvate metabolism and glycolysis/gluconeogenesis (Figure 1C). Furthermore, their associations spanned GO terms, such as mitochondrial matrix, intracellular organelle lumen (CC), and cellular amino acid catabolic process (BP), as well as specific metabolic pathways and processes (MF), as shown in Figure 1D.
Identifying 13 prognostic genes for NSCLC through risk model

Utilizing LASSO regression on 14 significant genes, we established a λ_{min} value of 0.0072 (Figure 2A and 2B). Of these genes, 13 genes were significantly tied to the risk model, with DLD being the exception. Expression levels of these 13 prognostic genes in NSCLC samples are illustrated in Figure 2C. Intriguingly, in the DSS analysis, the low-risk group presented a poorer survival outcome compared to the high-risk counterpart (Figure 2D). The ROC results of the risk model yielded AUC values of 0.654, 0.615, and 0.643 for 1-, 3-, and 5-year OS, respectively (Figure 2E).

LIPT1 identified as a key prognostic gene in NSCLC

Combining NSCLC clinical attributes (smoking, age, pT-stage, pN-stage, and pM-stage) with 13 previously mentioned prognostic genes, we executed univariate and multivariate Cox analyses (Figure 3A and 3B). These analyses showed LIPT1 as the sole gene manifesting significant expression consistently. Thus, LIPT1 was designated as a primary prognostic gene and incorporated into the NSCLC nomogram (Figure 3C). Calibration results revealed a consistent alignment between anticipated and observed outcomes, especially notable at the 1- and 3-year marks, underscoring LIPT1’s substantial prognostic significance in NSCLC (Figure 3D).

LIPT1 expression and its prognostic implications in NSCLC

Among 1017 NSCLC tumors and 578 GTEx normal samples, LIPT1 expression was diminished in NSCLC (Figure 4A). The OS and PFS analyses revealed that elevated LIPT1 levels correlated with improved survival outcomes (Figure 4B and 4C). Detailed
subgroup analysis showed that LIPT1 expression was consistent across different age groups, genders, smoking statuses, and stages (both M and N), showing no significant differences (Figure 4D–4F, 4I, and 4K). However, significant variations were observed in different racial subgroups. Notably, White and Asian populations exhibited marked differences (Figure 4G). Similarly, there were significant disparities in LIPT1 levels between stages I and II, as well as between stages I and III (Figure 4H). Furthermore, a pronounced difference was evident between T1 and T3 tumor stages (Figure 4I). These observed LIPT1 expression variations across certain clinical parameters suggest its pivotal role in NSCLC progression and its potential utility as a prognostic marker.

Association between LIPT1 expression and altered immune landscape in NSCLC
We stratified TCGA–NSCLC samples into high (509 samples) and low (508 samples) LIPT1 expression groups. The CIBERSORT analysis highlighted variances in immune cells like naive B cells and plasma B cells (Figure 5A). Spearman correlation for LIPT1 with the EPIC immune infiltration revealed negative associations with B cells, CD4+ T cells, endothelial cells, and macrophages. Conversely, positive associations emerged with CD8+ T cells and uncharacterized cells (Figure 5B–5G). The high-expression LIPT1 group manifested a diminished tumor immune dysfunction and escape (TIDE) score (Figure 5H), while a positive correlation was noted between

Figure 3. Identification of key prognostic gene LIPT1 in the prognostic nomogram of NSCLC. (A) Univariate Cox analysis of the 13 prognostic genes and clinical features (smoking, age, pT-stage, pN-stage, and pM-stage) of NSCLC patients, with hazard ratios and 95% confidence intervals represented by forest plots; (B) Multivariate Cox analysis of the selected significant genes and clinical features, with hazard ratios and 95% confidence intervals represented by forest plots; (C) Prognostic nomogram integrating LIPT1 expression and clinical features for predicting 1-, 3-, and 5-year OS rates of NSCLC patients, with each variable assigned a point on the nomogram’s scoring scale; (D) Calibration curves of the nomogram for 1-, 3-, and 5-year OS predictions, indicating the agreement between predicted and actual outcomes, with the x-axis representing the predicted survival rates and the y-axis representing the observed survival rates. The closer the curve is to the 45-degree line, the better the prediction performance of the nomogram. NSCLC: Non-small cell lung carcinoma; OS: Overall survival; LIPT1: Lipoyltransferase 1.
TMB and \(\text{LIPT1} \) expression (Figure 5I). These patterns and correlations suggest an impact of \(\text{LIPT1} \) on immune dynamics in NSCLC.

\textbf{\(\text{LIPT1} \) overexpression inhibits migration and invasion of NSCLC cells}

qRT-PCR analyses showed that \(\text{LIPT1} \) expression was diminished in NSCLC cell lines, with a notably marked decrease in HCC827 and A549 cell lines when compared to normal lung cells (Figure 6A). The findings from the western blot were also consistent, demonstrating reduced \(\text{LIPT1} \) protein levels in these tumor cell lines (Figure 6B). This points to the potential tumor suppressor role of \(\text{LIPT1} \) in NSCLC. To delve deeper, we upregulated \(\text{LIPT1} \) in NSCLC cells and validated the overexpression through both qRT-PCR and western blot analysis (Figure 6C and 6D). Interestingly, the increased expression of \(\text{LIPT1} \) significantly inhibited the migratory and invasive capabilities of HCC827 and A549 cells. This was evident through transwell assays (Figure 6E and 6F).

\textbf{Overexpressed \(\text{LIPT1} \) inhibits copper-stimulated NSCLC cell proliferation and induces apoptosis}

We investigated the effects of \(\text{LIPT1} \) overexpression on NSCLC cell growth, both with and without copper stimulation, utilizing...
Figure 5. Immune infiltration and correlation with LIPT1 expression in NSCLC. (A) Differential expression of immune cells in TCGA-NSCLC samples with high (n = 509) and low (n = 508) LIPT1 expression using CIBERSORT; (B–G) Spearman correlation analysis between LIPT1 expression and immune cell infiltration (EPIC) in NSCLC, revealing negative correlation with B cells, CD4+ T cells, endothelial cells, and macrophages, and positive correlation with CD8+ T and uncharacterized cells; (H) TIDE scores in high expression and low expression LIPT1 groups, with higher scores observed in the low expression group; (I) Spearman correlation analysis between TMB and LIPT1 expression in NSCLC, showing a positive correlation. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. TCGA: The Cancer Genome Atlas; NSCLC: Non-small cell lung cancer; TMB: Tumor mutational burden; LIPT1: Lipoyltransferase 1.

Figure 6. Experimental validation of LIPT1 as a tumor suppressor in NSCLC cells. (A) qRT-PCR analysis showing the relative expression levels of LIPT1 in normal lung cells and NSCLC cell lines; (B) Western blot analysis confirmed the downregulation of LIPT1 protein levels in NSCLC cell lines; (C and D) qRT-PCR and western blot analysis confirmed the overexpression of LIPT1 in NSCLC cell lines; (E) Transwell invasion assay demonstrated a significant decrease in the invasive capacity of HCC827 and A549 cells with LIPT1 overexpression; (F) Transwell migration assay demonstrated a significant decrease in the migratory capacity of HCC827 and A549 cells with LIPT1 overexpression. *P < 0.05, **P < 0.01. NSCLC: Non-small cell lung cancer; qRT-PCR: Quantitative real-time polymerase chain reaction; LIPT1: Lipoyltransferase 1.
LIPT1 overexpression suppresses NSCLC proliferation via downregulation of ATOX1 in copper-stimulated conditions

Building on earlier findings, we postulated that LIPT1, associated with cuproptosis, impedes NSCLC growth by modulating ATOX1, a copper chaperone gene. We presented the results of a PCR assay showing the expression level of ATOX1 mRNA in NSCLC cells after LIPT1 overexpression. The data showed a significant negative correlation between LIPT1 overexpression and ATOX1 mRNA levels. This suggests that LIPT1 negatively regulates ATOX1 transcription, leading to a decrease in ATOX1 mRNA expression (Figure 8A). This assay analyzed the ATOX1 protein level in NSCLC cells. Consistent with the PCR data, the western blot results indicated that the reduction in ATOX1 protein levels was in response to LIPT1 overexpression. This further supports the idea that LIPT1 plays a regulatory role at the protein level by downregulating ATOX1 expression (Figure 8B).

Additionally, CCK-8 data demonstrated that the combination of copper-induced LIPT1 overexpression and ATOX1 silencing significantly impeded cell growth (Figure 8C and 8D). The strong inhibition of cell growth under these conditions implies a synergistic effect between copper-induced LIPT1 overexpression and ATOX1 silencing in curbing NSCLC cell proliferation. These findings reinforced the idea that LIPT1 attenuates NSCLC progression by targeting ATOX1.
Figure 8. Cuproptosis-related gene LIPT1 inhibits the development of NSCLC by inhibiting the expression of copper chaperone gene ATOX1. (A) qRT-PCR analysis of ATOX1 expression in NSCLC cells with LIPT1 overexpression; (B) Western blot analysis of ATOX1 protein expression in NSCLC cells with LIPT1 overexpression; (C and D) CCK-8 assay evaluated the effect of LIPT1 overexpression and ATOX1 knockdown on NSCLC cell proliferation after copper stimulation. *P < 0.05, **P < 0.01. NSCLC: Non-small cell lung cancer; ATOX1: Antioxidant 1; qRT-PCR: Quantitative real-time polymerase chain reaction; CCK-8: Cell Counting Kit-8; LIPT1: Lipoyltransferase 1.

Discussion

Aberrations in pyruvate metabolism within NSCLC cells, particularly characterized by elevated lactate production have been observed [28]. Cancer cells typically exhibit increased glycolysis, a metabolic shift that supports tumor growth, survival, and invasion [29]. Moreover, oxidoreductases, enzymes that catalyze redox reactions, have been implicated in NSCLC pathogenesis [30]. For instance, the upregulation of the oxidoreductase enzyme, thioredoxin reductase 1 (TXNRD1), has been reported in NSCLC, and its inhibition can induce cell cycle arrest and apoptosis [31]. The investigation of these pathways and GO terms in NSCLC could unveil important details about potential molecular mechanisms and identify novel therapeutic targets for this challenging disease.

Subsequently, we used 14 noteworthy genes to construct a prognostic risk model and develop a prognostic nomogram. This nomogram, centered on LIPT1, showcased superior predictive accuracy and led us to pinpoint LIPT1 as the primary prognostic gene in our investigation. LIPT1, or lipoyl-protein ligase 1, is an enzyme integral to the lipic acid metabolic pathway, playing a pivotal role in the efficacy of several vital metabolic enzymes [32]. Previous research on LIPT1 is scarce. Zhang et al. [33] suggested...
that downregulation of LIPT1 in hepatocellular carcinoma may have a potential tumor-suppressive role. Another study by Li et al. identified LIPT1 as a prognostic biomarker in breast cancer, further supporting its potential role in cancer progression [34].

Our comprehensive assessment, encompassing survival, clinical features, and immune analyses, in conjunction with LIPT1 overexpression experiments, yielded several pivotal insights. Primarily, LIPT1 is underexpressed in NSCLC, and its elevated levels correlate with improved OS and PFS outcomes. Interestingly, factors, such as age, race, and smoking habits, showed no distinct correlation with LIPT1 expression in NSCLC patients. The patterns of immune infiltration hint to LIPT1’s potential role in immune regulation, opening up prospects for innovative immunotherapeutic strategies in NSCLC. Both PCR and western blot assays confirmed the LIPT1’s diminished expression and its overexpression was found to robustly inhibit NSCLC cell invasion and migration. Through CCK-8 and apoptosis assays, we observed that copper stimulation augments the inhibitory potency of LIPT1 overexpression on NSCLC cell proliferation and bolsters its proapoptotic attributes. In essence, LIPT1 emerges as a prospective tumor suppressor and holds promise as a prognostic marker in NSCLC.

Given the cytotoxicity of excess copper, a complex network of copper chaperones and transport proteins tightly regulates intracellular copper homeostasis [35]. Copper transport within cells is facilitated by tiny molecules called copper chaperones, including cystochrome c oxidase 17, ATOX1, and copper chaperone for superoxide dismutase [36]. In our study, we focused on ATOX1, recently identified as relevant to cuproptosis-related genes and NSCLC [37]. ATOX1 is a small metallochaperone protein that plays a crucial role in intracellular copper trafficking and homeostasis [38]. ATOX1 provides copper to P-type ATPases that transport copper, which are essential for the proper functioning of numerous cellular processes, including redox homeostasis, energy production, and cell signaling [39]. Previous research, including a study by Jana et al. in 2020 suggested that ATOX1 could potentially serve as a prognostic marker and therapeutic target in colorectal cancer [40]. Another study by Blockhuys S et al. in 2021 indicated that ATOX1 might contribute to breast cancer metastasis and could represent a potential therapeutic target [41]. In our experiments using PCR and western blot assays, we examined the effects of LIPT1 overexpression on ATOX1 levels in NSCLC cells, uncovering an inverse relationship between LIPT1 overexpression and ATOX1 levels. Further assessments using CCK-8 assays indicated that when LIPT1 overexpression was stimulated by copper and combined with ATOX1 knockdown, there was a marked reduction in NSCLC cell proliferation.

Conclusion

This study pinpointed LIPT1, a cuproptosis-related gene, as a pivotal prognostic determinant in NSCLC through bioinformatic methodologies. Demonstrated to function as a tumor suppressor, LIPT1 presented potential as a diagnostic marker for NSCLC. Notably, LIPT1’s putative role in impeding NSCLC progression is hypothesized to be mediated via the modulation of the copper chaperone gene ATOX1, a claim substantiated by cellular assays. These insights forged new links between cuproptosis-related genes and NSCLC, enriching avenues for diagnosis, treatment, and prognosis in NSCLC.

Conflicts of interest: Authors declare no conflicts of interest.

Funding: Authors received no specific funding for this work.

Data availability: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Submitted: 15 October 2023
Accepted: 15 November 2023
Published online: 24 November 2023

References

