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R E V I E W

Refining PD-1/PD-L1 assessment for biomarker-guided
immunotherapy: A review
Marek Zdrenka 1, Adam Kowalewski 1, Navid Ahmadi 2, Rizwan Ullah Sadiqi 3, Łukasz Chmura 4, Jędrzej Borowczak 5,
Mateusz Maniewski 5, and Łukasz Szylberg 1,5∗

Anti-programmed cell death ligand 1 (PD-L1) immunotherapy is increasingly crucial in cancer treatment. To date, the Federal Drug
Administration has approved four PD-L1 immunohistochemistry (IHC) staining protocols, commercially available in the form of “kits,”
facilitating testing for PD-L1 expression. These kits comprise four PD-L1 antibodies on two separate IHC platforms, each utilizing
distinct, non-interchangeable scoring systems. Several factors, including tumor heterogeneity and the size of the tissue specimens
assessed, can lead to PD-L1 status misclassification, potentially hindering the initiation of therapy. Therefore, the development of more
accurate predictive biomarkers to distinguish between responders and non-responders prior to anti-PD-1/PD-L1 therapy warrants
further research. Achieving this goal necessitates refining sampling criteria, enhancing current methods of PD-L1 detection, and
deepening our understanding of the impact of additional biomarkers. In this article, we review potential solutions to improve the
predictive accuracy of PD-L1 assessment in order to more precisely anticipate patients’ responses to anti-PD-1/PD-L1 therapy, monitor
disease progression, and predict clinical outcomes.
Keywords: Programmed cell death-1 (PD-1), programmed cell death ligand 1 (PD-L1), biomarkers, diagnosis, treatment response,
digital pathology.

Introduction
In recent years, targeting programmed cell death-1/programmed
cell death ligand 1 (PD-1/PD-L1) pathway has emerged
as a treatment approach that provides a durable clinical
response [1]. Anti-PD-1 therapy aims not only to improve
the functions of immune cells but also to normalize the
immune system, and thus exert its anticancer activity [2].
Currently, only ∼20% of patients achieve an objective response
to immune checkpoint inhibitors (ICIs), while the others
do not respond well or develop treatment resistance. Most
ICIs are administered over the long term and come with the
risk of significant toxicities. Additionally, patients’ responses
to therapy can vary widely. Therefore, developing reliable
predictive biomarkers is crucial for guiding individualized
immunotherapy treatment [3, 4].

The PDCD1 gene encodes human PD-1 (CD279) and belongs
to the immunoglobulin gene superfamily. It was originally iso-
lated by Ishida et al. [5] and was named for its involvement
in apoptosis. It is a transmembrane glycoprotein that con-
tains an extracellular IgV domain, a hydrophobic transmem-
brane domain, and a cytoplasmic tail structure domain [6].
An immunoreceptor inhibitory tyrosine-based switching motif

(ITSM) located on the cytoplasmic tail appears to be necessary
for the immunosuppressive function of PD-1 on T cells [7]. PD-L1
is a ligand of PD-1 and a type I glycoprotein which belongs to the
protein B7 family. It contains IgV and IgC structural domains,
a hydrophobic transmembrane domain, and a cytoplasmic tail
structural domain [8].

PD-1 and PD-L1 are part of an essential signaling pathway
that mediates immune tolerance in the tumor microenviron-
ment. While PD-1 is a surface receptor of activated T and B cells,
PD-L1 is expressed on tumor cells and antigen-presenting
cells (APCs), but also in normal tissues, including epithe-
lium, muscle, and placenta [9, 10]. When PD-1 and PD-L1
interact, phosphorylation of tyrosine residues in the PD-1 cyto-
plasmic region of ITSM occurs, recruiting the Src homology
2 domain-containing protein tyrosine phosphatase-2 (SHP-2).
Subsequent phosphorylation of downstream proteins by the
spleen tyrosine kinase (Syk) and phospholipid inositol 3-kinase
(PI3K) inhibits T cell signaling and functions, such as prolifer-
ation, adhesion, cytokine production, and cytotoxicity [11, 12].
This process mediates the autoregulatory response and protects
against local tissue damage during inflammation but can also
result in tumor-specific T-cell exhaustion and apoptosis [13].
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PD-L1 expression appears to mirror the dynamics between
host immune surveillance and cancer immune escape. Thus,
expression of PD-L1 in head and neck squamous cell cancer
(HNSCC) increases along disease progression, being less fre-
quent in premalignant lesions and most frequent in advanced
disease [14]. Suppression of the PD-1/PD-L1 interaction can
reset the immune system and enable it to attack tumor
cells [15]. Several clinical studies have demonstrated the clin-
ical activity of anti-PD-1/anti-PD-L1 agents in various tumors,
including non-small cell lung cancer (NSCLC), melanoma, and
Hodgkin lymphoma [16–18]. The overall findings suggest that
the higher the expression of PD-L1 in cancer cells, the better
the response to anti-PD1/anti-PD-L1 therapy. For example, in
patients with NSCLCs, pembrolizumab and nivolumab achieved
greater response in tumors with higher expression of PD-L1.
Similarly, patients with Merkel cell carcinoma who responded
to pembrolizumab had higher densities of PD-1+ and PD-L1+
cells when compared to non-responders [19]. Therefore, the
presence of PD-L1 expression is considered a biomarker for
anti-PD-1/PD-L1 treatment [20].

In 2011, the Food and Drug Administration (FDA) approved
the first ICI for melanoma, ipilimumab (Bristol-Myers Squibb).
In 2014, the FDA approved the first anti-PD-1 antibody,
pembrolizumab (Merck), for metastatic melanoma. Other
therapeutic monoclonal antibodies for NSCLC, urothelial
carcinoma, and head and neck cancer followed soon after [21].
For the treatment of some cancers, such as NSCLC, the FDA
requires a positive PD-L1 status before starting treatment with
pembrolizumab [22]. Although several studies have reported a
positive correlation between response to ICI, overall survival
(OS), and positive PD-L1 expression, PD-L1-negative patients
have also benefited from therapy. These results indicate that
PD-L1 is not an independent and comprehensive biomarker.
Its main shortcomings are the lack of a universal cutoff value
for PD-L1 expression, the insufficient standardization of the
PD-L1 assay and antibodies, and the spatial and dynamic
heterogeneity of PD-L1 expression [23, 24].

In this review, we describe the different methods used to
determine PD-1/PD-L1 expression, summarize the alternative
methods used for PD-1/PD-L1 assessment, and present ways to
increase the accuracy of PD-1/PD-L1 assessment. During the
literature review, we analyzed the PMC, Embase, Cochrane
Library, and Web of Science databases. Search terms included
“PD-1”, “PD-L1”, “anti-PD-1/anti-PD-L1 immunotherapy”,
“checkpoint inhibitors”, “PD-1 companion test”, “PD-1 comple-
mentary test”, “PD-1 digital assessment”, “PD-1 machine learn-
ing”, “anti-PD-1/anti-PD-L1 response”, and “anti-PD-1/anti-PD-
L1 prediction”. The analysis was extended by searching the
clinicaltrials.gov and fda.gov websites.

Immunotherapy indications linked to PD-L1
expression and controversies
The immunohistochemical (IHC) PD-L1 staining of tumor tissue
is used to predict response to therapy—in some indications
patients’ PD-L1 status must be determined before the treat-
ment can be started. The rules for categorizing test results as

“positive” vary between different types of malignancies and
relating to the quantitative threshold of stained objects and
the scoring method used (Table 1). The evaluation of immuno-
histochemical staining is performed by humans—visually by a
pathologist. It is therefore subject to certain variability. This
problem had to be considered when developing methods for
evaluating staining. Predictive tests used in practice must be
carefully balanced and take into account two issues that do not
necessarily coincide: prediction of response and a reasonably
low level of complications that ensures high interobserver (and
intraobserver) agreement.

There are four FDA-approved PD-L1 IHC staining protocols,
consisting of four PD-L1 antibodies (SP142, 22C3, 28-8, and
SP263) on two different IHC platforms (Agilent and Ventana
Medical Systems Inc., Tucson, AZ, USA), each with its own scor-
ing systems. There are also many FDA-approved assays for qual-
itative immunohistochemical assessment of PD-L1 protein [25].
Standardization and validation of these tests require pre-made
test kits with reagents that run on company-specific stain-
ing platforms whose efficacy for the approved PD-1 and
PD-L1 immunotherapeutics has been evaluated in clinical
trials [26]. These tests can be divided into complementary
(or co-diagnostic) assays and companion diagnostics. Accord-
ing to the FDA definition, complementary diagnostics may be
related to a particular drug and provide more details about
its potential use, but are not part of the approved indica-
tions. In contrast, companion diagnostics refer to a specific
drug within its approval label to ensure its proper use [4, 27].
Diagnostic tests are complicated because performing each test
requires the use of a different platform and its own antibody
detecting system.

Currently, three types of scoring approaches are in use.
The most straightforward—“tumor proportion score” (TPS) or
“tumor cells” (TCs) parameter (the name varies depending on
the manufacturer of the assay)—is defined as the percentage of
PD-L1 positive tumor cells in relation to all viable tumor cells in a
sample. The remaining two methods: “combined positive score”
(CPS) and “immune cells” (ICs), introduce some intricacies.
CPS adds another parameter to the TPS equation—immune
cells. The score is then defined as the total number of viable
tumor cells and immune cells in the tumor bed divided by
the number of tumor cells only; the result is then multiplied
by 100 to get an absolute number (with a maximum value
of 100). The parameter IC is a percentage of the tumor sur-
face area with a presence of PD-L1-positive immune cells rel-
ative to all tumor surface area. This method of assessment
appears to be the least straightforward in practice. It is also
inherently prone to arbitrary decisions regarding the border
between an area occupied by inflammatory cells and the rest
that is free of them. The IC assessment leads to low intraob-
server agreement in some scenarios, and its applications are
limited [28].

The arbitrariness in the evaluation of the staining score is
not exclusive to the “IC” analysis. In practice, for example, it
is virtually impossible to count tumor and/or inflammatory
cells individually and calculate an accurate score because the
cells of interest are usually present in the hundreds to tens
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Table 1. PD-L1 testing and immune checkpoint inhibitor therapies (complementary or companion diagnostics)

Sample type PD-L1 testing Expression cutoff value Drug under consideration

Cervical cancer DAKO (22C3) companion diagnostic test* CPS ≥ 1 Pembrolizumab

Esophageal squamous cell cancer DAKO (22C3) companion diagnostic test* CPS ≥ 10 Pembrolizumab

DAKO (28-8) complementary test TC ≥ 1% Nivolumab

Gastric or gastroesophageal
junction adenocarcinoma

DAKO (22C3) companion diagnostic test CPS ≥ 1 Pembrolizumab

DAKO (28-8) companion diagnostic test TC ≥ 1% Nivolumab

Melanoma DAKO (28-8) complementary test TC ≥ 1% Nivolumab

NSCLC DAKO (22C3) companion diagnostic test* TPS ≥ 1% Pembrolizumab

DAKO (22C3) companion diagnostic test* TPS ≥ 50% Cemiplimab

VENTANA PD-L1 (SP142) assay* TC ≥ 50% or IC ≥ 10% Atezolizumab

DAKO (28-8) companion diagnostic test1* TC ≥ 1% Nivolumab + ipilimumab

VENTANA PD-L1 (SP263) assay TC ≥ 1% Durvalumab

VENTANA PD-L1 (SP263) assay TC ≥ 50% (first line), TC ≥ 1% (second line) Pembrolizumab

VENTANA PD-L1 (SP263) assay TC ≥1%, ≥5% and ≥10% (second line) Nivolumab

VENTANA PD-L1 (SP263) assay* ≥50% TC Atezolizumab

VENTANA PD-L1 (SP263) assay TC ≥50% Cemiplimab

SCCHN DAKO (22C3) companion diagnostic test* CPS ≥ 1 Pembrolizumab

DAKO (28-8) complementary test TC ≥ 1% Nivolumab

Triple-negative breast cancer DAKO (22C3) companion diagnostic test* CPS ≥ 10 Pembrolizumab

Urothelial carcinoma DAKO (22C3) companion diagnostic test CPS ≥ 10 Pembrolizumab

VENTANA PD-L1 (SP142) assay* IC ≥ 5% Atezolizumab

DAKO (28-8) complementary test TC ≥ 1% Nivolumab

*FDA-approved Companion Diagnostic Devices, 22 Jun 2023 [173]; 1 only for NSCLC.
DAKO (22C3) Companion Diagnostic Test: Tumor proportion score (TPS) is the percentage of viable tumor cells showing partial or complete membrane
staining at any intensity. Combined positive score (CPS) is the number of PD-L1 staining cells (tumor cells, lymphocytes, and macrophages) divided by the
total number of viable tumor cells multiplied by 100. VENTANA PD-L1 (SP142) Assay: IC is the percentage of tumor area covered by tumor-infiltrating
immune cells. TC is the percentage of PD-L1-stained tumor cells. DAKO (28-8) Complimentary Test: PD-L1 protein expression is defined as the
percentage of tumor cells exhibiting partial or complete membrane staining at any intensity. VENTANA PD-L1 (SP263) Assay: TC is the percentage of
PD-L1 stained tumor cells. The percentage of tumor cells determines PD-L1 status with any membrane staining above the background or by the percentage
of tumor-associated immune cells with staining (IC+) at any intensity above the background. The percent of tumor area occupied by any tumor-associated
immune cells (immune cells present [ICP]) is used to determine IC+, which is the percent area of ICP exhibiting PD-L1 positive immune cell staining. PD-L1:
Programmed death-ligand 1; NSCLC: Non-small cell lung cancer; SCCHN: Squamous cell carcinoma of head and neck; FDA: Food and Drug Administration;
NSCLC: Non-small cell lung cancer.

of thousands. Routinely, then, the test result is an approxima-
tion—several types of malignancies have “about” a clear-cut
impact on whether therapy will be used. Limitations inherent to
the method can also have a significant impact on the evaluation.
Known issues include artifactual (non-valid) edge staining and
“perceptible and convincing membrane staining,” listed as valid
in the evaluation manuals [29].

PD-L1 staining in tumor tissue may be heterogeneous, rais-
ing concerns about sampling reliability. A patient may have
two different results of the PD-L1 staining test—positive or
negative. For the administration of drugs, such as atezolizumab
and pembrolizumab, a positive IHC test is required in some
indications. For example, administration of pembrolizumab as a
single agent for first-line treatment of patients with metastatic
or unresectable recurrent HNSCC requires a CPS ≥ 1 [30–33].
Small specimens with a limited number of cells exacerbate this

problem because they tend to show decreased staining intensity
compared with resected material [34, 35]. Another issue regard-
ing the IHC PD-L1 assessment is the variety of assays using
specific antibody clones for FDA-approved drugs (Table 1). A
comparative study has shown that assays are not always inter-
changeable, with clones 22C3, 28-8, and SP263 giving similar
results, while SP142 is less intense and 73-10 is more intense in
staining [28]. Parra et al. [26] found that Dako 22C3, Dako 28-8,
and Ventana SP263 can be used interchangeably but not with
the Ventana SP142 assay, which detected significantly fewer
NSCLC cells. In HNSCC, the Ventana SP263 assay showed a
higher rate of positive results than other assays, but the SP142
achieved the highest sensitivity (92%) and specificity (100%)
in determining positive CPS scores. While these assays have
a relatively high risk of false positive results, several stud-
ies are ongoing to determine whether certain IHC assays can
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accurately distinguish between PD-L1 negative and positive
cells (Figure 1) [36, 37].

Future findings will play an essential role in the introduction
of PD-1/PD-L1 targeted therapies and treatment of patients.

Solutions to enhance the viability of PD-L1
assessment prior to anti-PD-1/PD-L1 therapy
To date, the population that might benefit from ICI therapy
has not been optimally defined. Nevertheless, several factors
predictive of response to PD-1/PD-L1 therapy have been iden-
tified, such as PD-1/PD-L1 expression, gut microbiome, antigen
recognition, mismatch repair (MMR), microsatellite instability
(MSI), tumor-infiltrating immune cells, and tumor mutation
burden (TMB) [38]. To better exploit the therapeutic potential
of PD-1/PD-L1 blockade, there is a need to identify predictive
biomarkers of response to therapy, develop novel therapeutic
strategies, and improve therapeutic strategies in combination
with other agents. Novel negative predictive markers may
potentially reduce the number of patients who do not respond
to therapy. There is a great need for basic tumor immunology
research and innovative clinical trials to fully unleash the
potential of ICI combinations for the benefit of patients [39, 40].
In the next part, we will describe the approaches that
improve the predictive power of PD-L1 assessment
(Figure 2).

Assessment of the PD-L1 status
Performing multiple biopsies

The known heterogeneity of PD-L1 expression raises the
question of how to ensure that the examined biopsy samples
reflect the PD-L1 expression of the entire tumor. In their
recent meta-analysis, Wang et al. showed no significant
difference in the detection rate of PD-L1 at a 1% cutoff between
biopsy and surgical resection specimens. However, there was
a significant difference between the two groups when the
cutoff was 50% (P < 0.01). The detection rate of PD-L1 in
small biopsies using the SP142 antibody was lower than in
surgical specimens, compared to using other antibodies for
both 1% and 50% cutoffs (P < 0.01) [41]. Moreover, HNSCC
biopsy specimens underestimated the prevalence of PD-L1, and
their concordance with resection specimen results reached
κ = 0.175 for 22C3 and κ = 0.266 for SP142 [42]. Because
multiple tumors exhibit high intratumoral heterogeneity,
diagnosis may require different cutoff values determined for
each subtype of cancer; therefore, establishing a common
PD-L1 cutoff value may be impossible [43, 44]. In addition,
up to 35% of small (<2 mm) biopsies may be misclassified
as either false negative or false positive compared to larger
biopsies (>2 mm). It decreases to 10% when a threshold of 5 mm
is applied, highlighting the need for adequate sampling for
accurate PD-L1 evaluation [45]. Such analysis should take into
account the differences between the primary tumor site and the
metastasis [46, 47]. Munari et al. showed that at a 20% cutoff
value for core biopsy specimens, fewer than three core biopsies
are required to accurately identify cases of NSCLC (sensitivity
>90%, AUT > 0.9). Three or four core biopsies were required to

achieve high concordance at the 1% and 50% cutoffs. Thus, more
defined sampling criteria could be helpful to more accurately
determine the PD-L1 status of a given tumor [48–50]. Never-
theless, pathology studies comparing biopsies with resection
specimens are not sufficient to provide a rationale for introduc-
ing additional biopsies into clinical practice. Interventions that
affect the prevalence of positive and negative results require
clinical validation, whereas the decision to perform additional
biopsies should always consider the risks and benefits to
patients.

Alternative methods to detect PD-L1

IHC assays are not the only way to determine PD-L1 status.
Quantitative immunofluorescence (QIF) provides sensitive and
objective measurement of targets in user-defined tissue com-
partments. Briefly, the QIF score of PD-L1 signal for each anti-
body in tumor and stroma is calculated by dividing the target
PD-L1 pixel intensities in the tumor and stroma compartments.
McLaughlin et al. used QIF to show that PD-L1 expression
assessed by E1L3N and SP142 was heterogeneous. Values for
each tumor differed significantly by non-parametric paired test
(P < 0.001). Over 25% of patients positive with one antibody
were negative with the other. Expression of PD-L1 using both
E1L3N and SP142 correlated with high tumor-infiltrating lym-
phocytes (P = 0.007 and P = 0.021, respectively) [51].

The CLOVER study estimated the compatibility between
three IHC PD-L1 assays (22C3, SP142, and SP263) and the
Taqman reverse transcription PCR (RT-PCR) test in NSCLC [52]
The authors found high concordance between the TC scores
of all three assays and weaker concordance between the
IC scores. The correlations between the PCR result and the
result of each IHC assay were low; however, if the PCR test
was negative, there was also a high probability (92%–99%)
that all IHC tests would also be negative. These results
were recently confirmed by Venina et al. [53] and suggest
that PCR-based analysis of PD-L1 expression is not suitable
for detecting PD-L1-positive tumors. Although PCR can be
used to identify PD-L1-negative tumors, it is not equivalent
to IHC [52, 53].

Importantly, the above studies only assessed the con-
cordance between QIF, RT-PCT, and IHC, not the accuracy
of QIF and RT-PCR in predicting patient response to anti-
PD-1/anti-PD-L1 therapy. These methods require controlled
trials that would confirm their clinical validity compared
with IHC.

Amplification of chromosome 9p24.1, which contains PD-L1,
PD-L2, and Janus kinase 2 (JAK2), is commonly found in
Hodgkin’s lymphoma, triple-negative breast cancer (TNBC),
and NSCLC [54–56]. PD-L1 and PD-L2 gene copy number can
be assessed by fluorescence in situ hybridization (FISH) or
next-generation sequencing (NGS) [56]. In TNBC, the distri-
bution of amplification of chromosome 9p24.1 targeting PD-L1,
PD-L2, and JAK2 (PDJ amplicon) per cell varied significantly
between biopsies. The mean copy number increased up to
26 copies in cells with PDJ amplification. Increased stromal
tumor-infiltrating lymphocytes were detected in TNBCs with
PDJ amplicons targeting PD-L1 and JAK2, suggesting that these
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Figure 1. Immunohistochemical patterns of PD-L1 expression stained by the SP263. (A) Negative PD-L1 expression in head and neck cancer; (B) Positive
PD-L1 expression in head and neck cancer; (C) Negative PD-L1 expression in lung cancer; (D) Positive PD-L1 expression in lung cancer; (E) Negative PD-L1
expression in triple-negative breast cancer; (F) Positive PD-L1 expression in triple-negative breast cancer; (G) Negative PD-L1 expression in gastric cancer;
(H) Positive PD-L1 expression in gastric cancer. PD-L1: Programmed cell death ligand 1.

cases may respond to ICI therapy [57]. Therefore, the increase
in PD-L1 gene copy number detected by FISH may be an alter-
native biomarker for predicting response to anti-PD-1/PD-L1
therapy [56].

Multiplex immunofluorescence (mIF) is based on tyramide
signal amplification and multispectral imaging. It detects mul-
tiple markers in a single tissue section without affecting tis-
sue architecture [58]. In a recent meta-analysis, multiplex
IHC/IF appeared to have higher diagnostic accuracy than
PD-L1 IHC alone [59]. PD-L1 mIF scores appear to correlate with
the SP142 IHC assay and can be further improved by digital
image analysis [60, 61].

Soluble PD-1, PD-L1, and PD-L2 in plasma can be mea-
sured by enzyme-linked immunosorbent assay (ELISA) [62].
Intra-assay imprecision measurements showed that the coef-
ficient of variation did not exceed 10% for all three assays,
while other analyses estimated good dilution linearity and
selectivity of this method. ELISA can allow quantification
of the dynamic expression of PD-L1, and a high sPD-L1
level predicts worse OS lung cancer patients treated with
ICIs [63, 64]. sPD-L1 levels were also higher in renal cell carci-
noma and melanoma patients with objective response than in
patients with progressive disease [65]. Nevertheless, there are
a few studies regarding using ELISE to predict patient response
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Figure 2. The route to improving the discrimination between responders and non-responders before anti-PD-1/PD-L1 therapy. IHC: Immunohisto-
chemical; PD-1: Programmed cell death-1; PD-L1: Programmed cell death ligand 1.

to ICI and compare its concordance with other diagnostic
tools.

Assessment of PD-L1 expression dynamics
Surgery, chemotherapy, and immunotherapy affect the expres-
sion of PD-L1, which may increase when tumor volume
decreases [66, 67]. Such heterogeneous expression of PD-L1
limits the applicability of IHC as a predictor of treatment
outcome [68]. Real-time quantitative analysis of PD-L1 expres-
sion and dynamic mapping with radioisotope labeling can
reduce the diagnostic uncertainty that arose due to PD-L1
level changes during treatment [69, 70]. Positron emission
tomography and single-photon emission computed tomography
(SPECT) can enable dynamic mapping of PD-L1. At the same
time, the characteristics of SPECT/CT images using 99mTc-NM-
01-labeled anti-PD-L1 single-domain antibodies correlate with
the results of PD-L1 IHC in NSCLC patients [71]. Diagnostic
accuracy may also benefit from continuous sampling at multiple
time points. However, the application of the above-mentioned
approach might be quite complicated in daily practice [72].

Evaluating PD-1/PD-L1 proximity
Recently, Nunes-Xavier et al. [73] reported that even patients
classified as PD-L1-negative benefit clinically from ICI ther-
apy, calling into question the validity of IHC in determin-
ing patients’ PD-L1 status. It appears that ligand expression is
not sufficient to predict treatment response. Since PD-1 and
PD-L1 mediate immunosuppression, assessing their proximity
allows for obtaining additional information regarding their
interactions [72].

iFRET is an imaging test that quantifies readouts of immune
checkpoint interactions between cells and measures the dis-
tance between PD-L1/PD-1 on TCs and ICs [74]. Immune-FRET
uses cell–cell amplified Föster resonance energy transfer
detected by fluorescence lifetime imaging microscopy. First,
PD-1 and PD-L1 are identified by their respective antibodies, and
then the primary antibodies are stained with Fab conjugated
to a donor chromophore: ATTO488 for PD-1 and ALEXA594
for PD-L1 [75]. When the distance is smaller than 1–10 nm,
the fluorescence change is labeled as positive. The interaction
between PD-1 and PD-L1 has also been detected in clear cell renal
cell carcinoma, and their degree correlated with the prognosis
of melanoma and NSCLC patients [72, 74].

mIF accurately quantifies the percentage of PD-L1 expres-
sion in NSCLC based on PD-1/PD-L1 interactions [76]. While
six-plex mIF offers a high degree of control, simultaneous anal-
ysis of multiple markers, and evaluation at the single cell level,
the reproducibility and technical requirements for single IHC
assays appear to be more valuable in clinical practice [72].

Automated digital pathology algorithms
Koelzer et al. [77] used HALOTMIA software (IndicaLabs,
Albuquerque, NM, USA) to develop a PD-L1 expression scor-
ing algorithm using an approach called “Random Forest” for
melanoma. This trained algorithm recognized the stained and
unstained membrane PD-L1 in tumor cells, while immune cells
were successfully excluded and produced percentage of tumor
cells. In the total cohort of 69 cutaneous melanomas, two inde-
pendent pathologists found significant concordance between
the automated PD-L1 analysis and the percentage tumor cell
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score. The protocol used for PD-L1 image analysis also showed
excellent reproducibility [77].

The Aitrox AI Model assessed the expression of PD-L1 by
categorizing TPS scores into negative (<1%), low expression
(1%–49%), and high expression (TPS ≥ 50%) in NSCLC [78].
The authors compared TPS scoring results between AIrox AI,
five experienced pathologists, and six inexperienced patholo-
gists on whole-slide images (WSIs) to The Gold Standard for
TPS from three experienced pathologists. Despite 5.09% of
cases with large PD-L1 fluctuations, the Aitrox AI Model per-
formed better than inexperienced pathologists and was com-
parable to experienced pathologists in samples with negative
and low TPS. On the other hand, its performance was unsatis-
factory in high TPS groups, especially when images contained
large areas of false-positive cells. The predictions of Aitrox
were similar to those of experienced pathologists (rs = 0.87),
while its accuracy compared to pathologists varied depend-
ing on the TPS classification (85.29% vs 72.23%, low TPS and
high TPS, respectively), indicating its potential use in assisted
PD-L1 scoring [78].

Kim et al. [79] used the Aperio IHC membrane artificial
intelligence (AI) algorithm (Leica Biosystems, Wetzlar) to com-
pare pathologists’ interpretations and digital image analysis in
gastric cancer. A total of 29 cases of gastric cancer were ana-
lyzed using PD-L1 22C3 PharmDX (Dako) immunohistochem-
istry slides, and the slides were interpreted by independent
pathologists and digital image analysis. The concordance rate
of these interpretations reached 84.6%, and the remaining find-
ings did not differ significantly. In addition, a fully automated
artificial algorithm for PD-L1 IHC staining was developed to
analyze NSCLC needle biopsies. The algorithm used a novel
machine learning approach called “generative adversarial net-
works.” In the study, automatic algorithm and manual scoring
by a pathologist demonstrated high concordance [80]. Those
findings illustrate that AI and digital pathology should be con-
sidered as a supportive tool for the analysis of PD-L1 expression.

Advances in predictive biomarkers
PD-L1 deglycosylation and hypomethylation
Glycosylation of PD-L1 prevents its degradation by the
GSK3β-mediated 26S proteasome pathway and maintains its
stability [81]. However, high levels of glycosylated PD-L1
prevent surface antigen recognition by anti-PD-L1 antibodies
used in IHC assays [72, 81, 82]. Recombinant glycosidase
removed N-linked glycosylation in A549 and BT-549 cells,
enhancing PD-L1 fluorescence and increasing the binding
affinity of antibodies compared to control [81]. Similar
results were observed in colon cancer, where deglycosylation
increased the intensity of PD-L1 signal in samples with low
PD-L1 and reduced false-negative PD-L1 status [83]. However,
the impact and prevalence of possible false-positive results
remain unknown. Wang et al. suggest that deglycosyla-
tion of samples in an IHC protocol can remove N-glycans
from surface antigens on formalin-fixed paraffin-embedded
(FFPE) samples and increase binding affinity. Briefly, after
pretreatment of the FFPE slide, denaturation of glycoproteins

should be performed. Then, the slide is deglycosylated with
a PNGase F and stained for IHC. Such adjustment could
improve the correlation between PD-L1 assessment and clinical
response [82].

DNA methylation can also alter the activity of the tar-
get gene and lead to different responses to treatment [84].
For example, a CpG-based model of Lasso predicts the overall
response rate to PD-1/PD-L1 therapy better than models based
on tumor mutational burden (AUC 0.92 vs 0.77). PD-L1 hyper-
methylation makes the disease less responsive to anti-PD-L1
treatment and is associated with shorter OS in several cancer
types [72, 85, 86]. A positive correlation was observed between
PD-L1 promoter methylation and PD-L1 expression in gastric
cancer [87]. Methylation of PD-L1 promoter DNA predicted poor
prognosis in melanoma, and hypomethylation of PD-L1 was
associated with a transcriptomic phenotype [88]. The combina-
tion of hypomethylating agents and ICIs could improve treat-
ment efficacy [85]. High ALKBH5 (m6a demethylase) inhibits
m6a modification in PD-L1 DNA, which increases sensitiv-
ity to anti-PD-L1 therapy. Therefore, simultaneous detection
of mPD-L1 and ALKBH5 may also improve the assessment of
response rates to ICI treatment [89].

Tumor genome and neoantigen biomarkers
Selection of antigens produced by tumor-specific mutations
may enhance the efficacy of tumor-specific immune responses
and minimize immune tolerance [90]. As DNA accumu-
lates, the probability of successfully presenting neoantigens
increases, as does the number of candidate peptides [91].
TMB significantly correlates with response to ICIs in var-
ious tumors [92]. In a recent meta-analysis, the objective
response rate (ORR) to PD-1/PD-L1 therapy increased with
TMB in 27 cancers [93]. Consequently, the National Com-
prehensive Cancer Network (NCCN) has adopted TMB for
patients receiving immunotherapy for NSCLC. The FDA
approved TMB as a diagnostic biomarker for pembrolizumab in
April 2020 [94].

Different cutoff values for TMB were used in the differ-
ent studies. The lowest cutoff was for nivolumab plus ipil-
imumab (>10 mt/Mb in NSCLC), while the highest was for
pembrolizumab (>23.1 mt/Mb in NSCLC) [95]. Ming argued
that high TMB, defined by >10 mutations/Mb, is not predic-
tive of response across different cancer types. After testing
several possible cutoffs, the author reported that a TMB cutoff
of 13 mutations/Mb may be universally optimal for predicting
favorable outcomes [96]. Another study using a TMB cutoff of
20mt/Mb in 4064 NSCLC patients with the Foundation One
platform containing 395 gene panels found that OS and disease
control rates were significantly improved in TMB-H patients
compared to TMB-L patients treated with anti-PD-1/anti-PD-L1
drugs [97]. TMB ≥175 mutations/exome was associated with
increased ORR (31.4% for TMB ≥175 vs 9.5% for TMB<175),
longer progression-free survival (PFS), and longer OS in solid
cancers treated with pembrolizumab [98]. In a recent meta-
analysis, high TMB compared with low TMB predicted favor-
able PFS, OS, and ORR in NSCLC. In patients with high TMB,
immunotherapy was associated with an improved response
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rate compared with chemotherapy. However, in patients with
low TMB, immunotherapy was associated with shorter PFS
and lower ORR than chemotherapy. This suggests that while
high TMB may predict treatment response, tumors with
high TMB may be more sensitive to chemotherapy than to
immunotherapy [99].

Epigenetic changes are associated with TMB, and NSCLCs
with high TMB have more DNA methylation copy number vari-
ations. This suggests a potential benefit in predicting HOX gene
methylation status and TMB. Furthermore, the integration of
DNA methylation and TMA data in NSCLC showed that patients
with high TMB had more methylated CpG sites (mCpGs) than
patients with low TMB [100]. The correlation between TMB and
CpG methylation appears to be due to spontaneous deamina-
tion of methylated cytosines [101, 102]. In another study, the
EPIMMUNE signature, an epigenetic signature of 301 different
mCpGs, correlated with longer OS and PFS after PD-1 blockade.
Interestingly, the results were independent of PD-L1 expres-
sion and TMB. Among known genes, a regulatory region of the
forkhead box P1 gene showed the greatest difference in CpG
methylation between responders and non-responders [103].
These epigenetic correlations paved the way for epigenetic
studies based on liquid biopsies, indicating the next direction
of research.

Genetic variations in DNA MMR cause MSI, which is asso-
ciated with a specific type of tumor that has a high number
of DNA-based repetitions in a microsatellite. MSI, like PD-L1
and TMB, is one of only three FDA-approved biomarkers of
response to immune checkpoint blockade (ICB). The durable
response of patients in several clinical trials led the FDA to
approve pembrolizumab for the treatment of all advanced
solid tumors with MMR deficiency (dMMR/MSI-H) [104].
dMMR also causes mutations in the DNA polymerase gene
epsilon/delta 1 (POLE/POLD1), increasing neoantigen load
(NAL) and mutations. Studies on POLE/POLD1 mutations in
various cancers showed that these mutations have higher TMB
and OS [105]. The GARNET study (NCT02715284) tested the
efficacy of dostarlimab, a PD-1 inhibitor previously approved
for dMMR recurrent/advanced endometrial cancer, in patients
with advanced and recurrent solid tumors. As shown, high TMB
and PDL1 levels were common in dMMR solid tumors regardless
of tumor type and correlated with a higher ORR (55.6% for all
cohorts) [106].

Many other alterations in the tumor genome affect the
efficacy of immunotherapy. Mutations in IFN-γ, JAK1/2,
and other genes affect their respective signaling path-
ways and often lead to resistance and poor response to ICI
therapy [107]. For example, anaplastic lymphoma kinase
(ALK) and epidermal growth factor receptor (EGFR) muta-
tions are associated with decreased response rates to ICIs
and lower TMB scores. Therefore, for those patients, treat-
ment with ICIs is not recommended as first-line therapy
but may be considered after the failure of tyrosine kinase
inhibitors [108, 109]. However, in KRAS-mutated NSCLC, the
percentage of TMB and expression of PD-L1 seems to depend on
the KRAS polymorphism, and its clinical role requires further
investigation [110].

Neoantigen load (NAL) is directly related to response to
ICIs. Tumors often consist of a variety of cancer subclones
with different mutations that determine their response to
therapy [111, 112]. Less heterogeneous tumors with fewer sub-
clones than their parental cells had increased immunogenicity
and slower growth [113]. Clonal antigens may induce an effec-
tive immune response, but some authors suggest that there is
a threshold of antigen diversity beyond which T cells cannot
control heterogeneous tumors [112, 114]. A high neoantigen bur-
den in tumors with low neoantigen heterogeneity within the
tumor is associated with a good prognosis. In primary lung
adenocarcinomas, patients with high clonal neoantigen bur-
den have longer OS (P = 0.025) [115]. Tumors with a higher
TMB appear to have a higher neoantigen load (NAL) and are
more likely to benefit from immunotherapy [116, 117]. A higher
mutation burden is thought to generate more tumor-specific
neoantigens that overexpress immune checkpoint modulators,
such as PD-1 and PD-L1 [118]. The immunogenicity of the
neoantigen can be assessed by analyzing its differential agre-
topicity index (DAI), which is defined as the ratio of binding
affinities to the major histocompatibility complex (MHC) of
the mutant and wild-type peptide. A higher DAI corresponds
to the increased binding affinity to the MHC and increased
immunogenicity [119]. Mutant peptides have a higher affinity
for the MHC and a higher mean DAI compared to a non-mutated
variant, which is associated with longer OS [94, 120]. DAI
outperforms TMB in predicting ICI treatment outcomes and
survival [121].

Liquid biopsy biomarkers
Liquid biopsy is a non-invasive method for collecting fluid
samples. To date, it has been mainly used to detect circulat-
ing tumor cells (CTCs) and cell-free circulating tumor DNA
(ctDNA) [72, 122]. Liquid biopsy detects PD-L1 on the surface
of CTCs and can monitor its dynamics in circulation during
therapy, including shifts in soluble PD-L1, exosomal PD-L1, and
PD-L1 expression in CTCs [72, 123–125].

In NSCLC and melanoma patients treated with nivolumab
and pembrolizumab, respectively, neutrophil-to-lymphocyte
ratio (NLR) is associated with poorer tumor response [126, 127].
In melanoma patients, NLR strongly predicted poorer response
in patients treated with ICI, and high CD14+, CD16+,
and HLA-DRhi cell levels predicted response to anti-PD-1
therapy [128, 129]. Elevated IL-8 levels predicted a negative
response to anti-PD-1 and anti-CTLA-4 in patients with
metastatic melanoma and NSCLC [130].

Another thoroughly studied biomarker that can be assessed
by liquid biopsy is CTCs. CTCs are commonly used to evaluate
response to therapy, as they have shown higher sensitivity
than imaging studies in some cases [131]. As a non-invasive
method, CTC analysis can avoid the frequent radiation exposure
associated with imaging studies [132]. They are a highly hetero-
geneous group that arise during the epithelial–mesenchymal
transition and acquire a mesenchymal-like phenotype. These
changes facilitate their escape from immune response and resis-
tance to immunotherapy [133]. Persistence of PD-L1-positive
CTCs after six months of treatment with nivolumab
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has been associated with disease progression in NSCLC
patients [134].

On the other hand, the absence of PD-L1-positive CTCs or a
decrease in the number of CTCs predicted a better prognosis and
a sustained response to long-term immunotherapy [135, 136].
However, in some studies, no decrease in CTC was observed
after immunotherapy, and CTC assessment was not included
in RECIST guidelines [132, 137]. Currently, the large hetero-
geneity of CTC is considered one of the greatest obstacles
to its widespread use in predicting patient outcomes. Never-
theless, recently developed technologies that allow genotyp-
ing of CTC may be the next step toward truly personalized
therapy [138, 139].

Circulating tumor DNA biomarkers
Genomic information about the tumor provided by ctDNA can
be used to predict response to ICIs; however, the sensitiv-
ity and specificity of this method still need to be improved.
In patients with metastatic melanoma, ctDNA correlated with
increased TMB. At the same time, undetectable ctDNA before
treatment correlated with longer OS and PFS, and high ctDNA
at baseline was a predictor of poorer prognosis [140–143].
Persistent elevation of ctDNA during ICIs treatment corre-
sponded to poorer response to immunotherapy, worse OS, and
worse prognosis. It can also assess pseudoprogression after ICIs
therapy [142].

Host-related markers
Host characteristics also influence the response to
immunotherapy. The meta-analysis by Conforti et al. [144]
showed that gender was associated with a higher response
rate to antitumor immunotherapies and men treated with
ICIs had a lower hazard ratio than women (0.72 vs 0.86;
P = 0.0019). In another meta-analysis, male patients treated
for NSCLC and melanoma had longer PFS and OS compared
with female patients [145]. In contrast, gender did not
affect PFS, OS, and IRR in clinical practice in the study by
Choi et al. [146].

In several studies, an increased intestinal microbiota
appeared to increase the percentage of patients responding
to ICIs [94]. A more numerous “good” microbiota was found
in melanoma patients who responded to treatment [147]. In
a meta-analysis on melanoma treated with anti-PD-1 drugs,
microbiota composition was associated with outcomes one year
after initial treatment. Actinobacteria phylum, Lachnospiraceae,
and Ruminococcaceae family of Firmicutes were associated with
favorable prognosis. Gram-negative bacteria, on the other
hand, were associated with unfavorable outcomes. Microbiota
signatures enriched in Lachnospiraceae spp. and Streptococcaceae
were also associated with favorable and unfavorable clin-
ical outcomes, respectively [148]. An analysis of patients
treated with ICIs showed that HLA-I was associated with
prolonged survival due to the increased number of tumor
antigens [149].

With long-term administration, ICIs can enhance the
immune response and cause immune-related adverse events
(irAEs) [150]. Although irAEs appear to be idiosyncratic, they

are neither a laboratory test nor a biomarker, but rather a
manifestation of immune system activity. As autoimmune
conditions that occur after ICI administration, irAEs can affect
any organ and differ in their natural history from autoimmune
diseases that arise de novo [151]. Therefore, these toxicities
present multiple challenges in clinical practice and require a
steep learning curve to diagnose and treatment. irAEs that occur
early after treatment initiation are associated with favorable
PFS and ORR in NSCLC patients treated with nivolumab [150].
Patients with gastric adenocarcinoma with irAEs treated with
anti-PD-1 antibodies had a longer OS (176 days vs 94 days,
P = 0.001) than patients without irAEs, and the occurrence
of irAEs was an independent favorable prognostic factor in this
group [152].

Different immunotherapeutic responses are associated with
different irAEs. For example, endocrine irAEs are associ-
ated with better prognosis and OS in melanoma patients,
while thyroid dysfunction relative to anti-PD-1 treatment in
NSCLC patients predicts longer PFS and OS [153, 154]. In
the meta-analysis by Wang et al. [155] irAEs were associ-
ated with higher ORR and OR in lung cancer patients who
underwent ICI. The prolonged OS remained significant for
dermatologic, endocrine, and gastrointestinal irAEs, but not
for hepatobiliary, pulmonary, and high-grade (≥3) irAEs.
Zhang et al. [156] reported similar correlations in NSCLC
patients.

Predictive biomarkers by ICI type
Specific biomarkers can predict clinical response to various
ICIs. High expression of anti-CTLA-4 resistance-associated
MAGE-A (CRMA), an eight-gene cluster, predicts poor response
to anti-CTLA-4 therapy but not to anti-PD-1 therapy. There-
fore, CRMA can be used to identify patients who do not
respond to anti-CTLA-4 therapy and may require anti-PD-1
agents instead [157]. MHC molecules have different sensitivity
and efficacy to CTLA-4- and PD-1-targeting antibodies. Loss
of MHC-I expression in melanoma cells leads to resistance to
anti-CTLA-4 but not anti-PD-1 therapy. On the other hand,
expression of MHC-II, which correlates with IFN-γ, has been
shown to predict melanoma response to anti-PD-1 but not to
anti-CTLA-4 therapy. It appears that MHC-I expression elic-
its a response against CTLA-4 melanoma, whereas an anti-
PD-1 response requires a pre-existing IFN-γ-mediated immune
activation [158].

Combination of multiple biomarkers
Single biomarkers often lack sensitivity and specificity to
reliably predict response to ICIs. A combination of multi-
ple factors, such as TMB, PD-L1, and CD8+TIL, is required
to perform a more accurate assessment. PD-L1 expression
and high TMB are associated with high benefit rate, pos-
itive predictive value of ORR, and longer PFS in NSCLC
patients [159, 160]. Similarly, Yu et al. showed that a combi-
nation of CD8+TIL, PD-L1, and high TMB improved PFS and
OS prediction compared with a single biomarker [159]. The
combination of TMB ≥10 mutations/Mb, PD-L1 > 50%, and
NLR <5 appears to improve the prediction of ICB outcome in
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NSCLC patients compared to TMB ≥ 9.24 mutations/Mb alone
(AUC 0.62 vs 0.74). The combination of high TMB, positive PD-
L1, and low NLR correlated with longer OS (P = 0.038) but not
with time to progression [161].

The IMAGiC model predicts response to ICI in patients with
advanced gastric cancer based on the expression signature of
four genes (ubiquitin C-terminal hydrolase L1 [UCHL1], tyro-
sine kinase 2 [TYK2], protein kinase D1 [PRKD1], and armadillo
repeat-containing X-Linked 1 [ARMCX1]). The cutoff value was
set at −0.18, and patients with values below −0.18 were clas-
sified as IMAGiC responders. Responders achieved a higher
complete response to partial response ratio and longer median
PFS than non-responders (70.6 vs 21.4% and 20.8 months vs
6.7 months, respectively) [162].

The ICB treatment signature (ITS) score consists of selected
genes associated with high CTL levels and TMB but excludes
genes related to immunosuppression. NSCLC patients with a
high ITS score had longer PFS and higher ORR (53.8% vs 7.1%)
after ICB treatment than patients with a low ITS score. A higher
ITS score was an independent prognostic factor for favorable
prognosis (HR = 0.097, P = 0.02) [163].

Goodman et al. employed the Patient Harmonic-mean Best
Rank (PHBR) and TMB to explain the interaction between TMB
and MHC-I and predict the response to ICB. A low PHBR repre-
sents strong neoantigen presentation, and a high PHBR repre-
sents poor neoantigen presentation. The median PFS for PHBR
score < 0.5 vs ≥ 0.5 was 5.1 vs 4.4 months (P = 0.04). Using a
TMB cutoff ≥ 10 mutations/Mb, patients with TMB high/PHBR
high had a lower response rate (43% vs 78%) and a shorter
median PFS (5.8 vs 26.8 months) than patients with TMB high-
/PHBR low. These results suggest that insufficient presentation
of neoantigens may contribute to poor response to ICB [164].

Machine deep learning and artificial
intelligence in developing multivariate
predictive models
In recent years, the role of AI and machine learning in cancer
research has increased, offering pathologists help in increasing
diagnostic accuracy [165–168]. Several studies describe auto-
mated PD-L1 scoring using AI [169, 170].

Chen et al. are developing a deep-learning model to pre-
dict IHC phenotype directly from WSIs to facilitate lung can-
cer subtyping. In the validation databases, the area under the
curve (AUC) and overall diagnostic accuracy of the algorithm
averaged 0.906 and 0.941 for surgical resection specimens and
0.888 and 0.887 for biopsies, respectively. Overall subtyping
performance was similar to that of a general pathologist. Fur-
thermore, when the authors tried to determine whether they
could use small biopsy specimens to train the system to predict
the expression status of the proteins ALK, PD-1, and PD-L1, the
AUCs reached 0.917, 0.576, and 0.525 for ALK, PD-1, and PD-L1,
respectively [166]. Therefore, other algorithms may be more
suitable to accurately detect PD-L1 status.

Shamai et al. used annotation software to develop a system
that predicts PD-L1 status from H&E-stained histopathologic
images of breast cancer. The system was validated in two

external datasets and showed consistently high performance,
with an AUC of 0.91–0.93. Wang et al. used deep learn-
ing, radiomics—a method that extracts many features from
medical images—and computed tomography-based models to
non-invasively measure PD-L1 expression in NSCLC. The
authors used 3D ResNet as a feature map extractor for deep
learning and constructed a specialized classifier. The AI algo-
rithm showed accurate prediction of PD-1 status and achieved
an AUC >0.93 for all cutoffs tested [171].

Deep learning image analysis offers an alternative to IHC
PD-L1 assessment. Considering the continuous progress in
AI and the emergence of systems that identify cases prone
to misinterpretation by pathologists, they may soon sup-
port decision making and ensure quality control in clinical
practice [172].

Conclusion
Anti-PD-1/PD-L1 therapy has significantly improved clini-
cal outcomes in numerous malignancies. However, due to
long-term drug administration, potentially serious adverse
events, and unsatisfactory concordance between different
PD-L1 assays, it remains a challenge to improve the viabil-
ity of biomarkers that predict response to ICIs. Heterogeneity
within the tumor prevents the establishment of a universal
cutoff value for PD-L1 assessment, while biopsy specimens usu-
ally underestimate PD-L1 expression, indicating that diagnosis
may require subtype-by-subtype analysis. Although perform-
ing multiple biopsies may increase diagnostic accuracy, such
an intervention should be preceded by randomized-controlled
trials.

Alternative methods for detecting PD-L1 by QIF, RT-PCR,
mIF, iFRET, or ELISE showed high agreement with the results of
IHC assays, but their suitability for predicting patient response
to ICIs remains to be determined in clinical practice. Preanalyt-
ical modification during sample preparation, such as PD-L1 gly-
cosylation by PNGase F in formalin-fixed, paraffin-embedded
samples, may increase the binding affinity of the anti-PD-L1
antibody and improve prediction of clinical response. A high
neoantigen and TMB reflects high intratumoral heterogeneity
and is associated with a good response to immunotherapy. How-
ever, their accuracy depends on the activity of the host immune
response and may be inaccurate in case of insufficient antigen
presentation. Recent reports suggest that methods, such as the
Differential Agretopicity Index, may be better suited to predict
patient response.

Analysis of PD-L1 expression on the surface of CTCs and
genomic data from ctDNA provides a dynamic assessment
of disease course. The disappearance of PD-L1-positive cells
after therapy predicts a sustained response to long-term
immunotherapy. Recent reports suggest that the combination
of multiple biomarkers, either based on TMB, PD-L1 expres-
sion, NLR, or gene expression signature, has higher sensitiv-
ity and specificity in predicting clinical response than single
biomarkers. Nevertheless, these models need to be tested in
clinical trials.

Finally, the development of digital pathology and machine
learning brought fresh air to the field of biomarker analysis.
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Algorithms based on whole-slide histopathological or computed
tomography image analysis show high performance and can
identify cases susceptible to misinterpretation by pathologists.
Although their use as the sole method for predicting clinical
response is questionable, they may soon support decision mak-
ing and become a quality control measure.
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