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R E S E A R C H A R T I C L E

A novel autophagy-related subtypes to distinguish
immune phenotypes and predict immunotherapy
response in head and neck squamous cell carcinoma
Bo Ma 1#∗ , Hui Li 1, Mingzhu Zheng 1, Rui Cao 2, and Riyue Yu 1#∗

Both the absence of autophagy and excessive autophagy is double-edged sword in tumorigenesis. Due to the specificity of autophagy,
its role in head and neck squamous cell carcinoma (HNSCC) is still unclear. In this study, we established five autophagy-related patterns
in 1165 HNSCC patients with distinct cellular and molecular characteristics. Additionally, we developed a new scoring system
(ATPscore) based on the differentially expressed genes (DEGs) among these five patterns, to represent the individual autophagy
regulation pattern. ATPscore was shown to be significantly correlated with tumor immune microenvironment (TIME) infiltration,
immune phenotypes, molecular subtypes, and genetic variations. We further found that ATPscore was both an independent prognostic
factor and a potent predictor of clinical response to immune-checkpoint inhibitors (ICIs)-based immunotherapy. We further verified the
value of key gene SRPX in ATPscore in HNSCC cell lines with the in-depth research of ATPscore and found that it is closely related to
immune subtypes, molecular subtypes, and immune activation-related markers. Our research could help us to understand the
underlying mechanisms of tumor immunity and provide a solid foundation for the combination of autophagy-targeted therapies with
immunotherapies for clinical application in HNSCC.
Keywords: Head and neck squamous cell carcinoma (HNSCC), immune phenotype, immunotherapy, tumor microenvironment
(TME), tumor mutation burden (TMB).

Introduction
Head and neck squamous cell carcinoma (HNSCC) is one of the
most common malignancies worldwide, with nearly 500,000
new cases and 350,000 deaths [1]. HNSCC is a heterogeneous
disease that originates from the different sites of the upper
aerodigestive tract, including oral cavity, oropharynx, larynx,
or hypopharynx. Although combination therapy improved the
prognosis of HNSCC patients, the five-year survival rate of
patients with HNSCC is still less than 50% [2, 3]. Thus, the
lack of rapid improvement in patient survival prompted us to
further investigate the molecular landscape of HNSCC.

Autophagy is a constitutively conserved physiologic
catabolic process that harvests energy and nutrients from
cellular components through the degradation and recycling
of damaged organelles and macromolecules [4–6]. Under
normal conditions, autophagy activates to maintain cellular
homeostasis by inducing nonselective bulk degradation or by
selectively targeting cytoplasmic components via cargo-specific
autophagy receptors [7, 8]. However, autophagy plays a dual
role in tumorigenesis in a context-dependent manner [9]. A
lack of autophagy could trigger the accumulation of genotoxic
cellular waste and induce genetic and chromosomal alterations,

subsequently facilitating the transformation of precancerous
cells and the formation of mature cancer cells [10]. How-
ever, excessive autophagy continuously recycles remodeling
components and replenishes energy supply, allowing cancer
cells to escape damage from the immune system or targeted
drugs and promote tumor progression [11, 12]. All this indicates
that autophagy is a double-edged sword in tumorigenesis,
which has already been verified in some preclinical cancer
models [13]. In HNSCC, some reported that increased levels
of cytoplasmic p62, which indicated inhibition of autophagy,
were correlated with reduced overall and disease-specific
survival [14]. Other groups demonstrated that patients with
poor clinical outcomes had higher levels of LC3-II, suggesting
reactivation of autophagy [15]. However, Zhou et al. showed
that radiation-induced autophagy could enhance the survival of
CNE-2 cells, which was further counteracted when autophagy
was inhibitied with chloroquine, which resulted in increase
in cell death [16]. We noticed a paradox in HNSCC, in which
autophagy played a controversial role in tumorigenesis, but the
underlying mechanism has not been reported.

Currently, we are experiencing a striking shift from
combination therapy based on chemotherapy and radiation
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toward more precise approach based on immunotherapy with
immune-checkpoints inhibitors (ICIs). Recent studies have
reported that autophagy significantly controls the immune
response. Autophagy can activate receptors, such as Toll-like
receptors (TLRs) and nucleotide oligomerization domain
(NOD)-like receptors (NLRs) to induce natural killer (NK)
T cells activation, cytokine production, and phagocytosis in
innate immunity. Furthermore, autophagy can also provide an
abundance of antigens for MHC class II molecules, including
HLA molecules toward dendritic cells for cross-priming
to CD8+ T cells in adaptive immunity [17, 18]. Moreover,
autophagy can facilitate, promote, or inhibit the proliferation
and differentiation of a variety of immune cells or the secretion
of a wide range of cytokines to modulate the tumor immune
microenvironment (TIME) homeostasis. Conversely, certain
cytokines and immune cells also exhibit a significant influ-
ence on autophagy function [19, 20]. Furthermore, immune
checkpoints, including indoleamine 2,3 dioxygenase (IDO),
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and
programmed cell death protein 1 (PD-1), have been shown to
regulate tumor immune tolerance through autophagy path-
ways. Accumulating evidence has shown that autophagy could
interact with TIME immune cells and cytokines to enhance
or attenuate the immunotherapy response, providing a novel
target for combination with immunotherapy [21]. However,
definite correlation between autophagy and TIME has not yet
been studied, and a comprehensive and systematic analysis is
urgently needed.

In the present study, we integrated the transcriptional
and genetic profiles of several cohorts to systematically ana-
lyze autophagy-related patterns and established an autophagy
phenotype-related signature (ATPscore) for individuals. Mean-
while, we verified the value of the key gene SRPX in ATPscore
in the HNSCC cell line. As a result, we found that distinct
autophagy-related patterns were highly correlated with TIME
infiltration, immune phenotypes, molecular subtypes, and clin-
icopathological characteristics, and that ATPscore was a robust
independent prognostic and predictive factor for clinical out-
come of ICIs immunotherapy.

Materials and methods
Data collection and processing
Publicly available transcriptional datasets for HNSCC were
systematically searched. Eleven datasets, including GSE6791,
GSE30784, GSE39366, GSE41613, GSE42743, GSE65858,
GSE40774, GSE84846, E-MTAB-1328, E-TABM-302, and
TCGA-HNSCC were included (Table S1). Finally, 6 datasets
(GSE6791, GSE30784, GSE40774, GSE84846, E-TABM-302, and
TCGA-HNSCC) with 1165 samples were included in our study
after filtering out the samples without complete prognosis
information. The above datasets were downloaded from
Gene-Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) and ArrayExpress (www.ebi.ac.uk/arrayexpress/)
database. Raw signal data were processed with the RMA algo-
rithm background correction, log2 transformation, quantile
normalization, and annotation by the “Affy” package in R [22].

The relative expression of each gene symbol was annotated
as highest when several probes mapped to a single gene
symbol. Then, the “ComBat” algorithm of “sva” package in R,
which reduced the likelihood of batch effects of nonbiological
technical biases from each dataset [23], was utilized to merge
the five microarray datasets (GSE6791, GSE30784, GSE40774,
GSE84846, and E-TABM-302) as a meta-HNSCC cohort. The
level 3 fragments per kilobase per million (FPKM) data of
the TCGA-HNSCC dataset were downloaded from the TCGA
Genomic Data Commons (GDC) data portal (https://portal.gdc.
cancer.gov/). Transcripts per kilobase million (TPM) values
were transferred from the FPKM values to represent the
relative expression of each gene symbol, which is more similar
to gene expression from microarrays and more comparable
between samples [24]. Detailed information on the clinico-
pathological characteristics for the TCGA-HNSCC dataset can
be found in Table S2. Somatic mutation data processed with
the MuTect2 algorithm for the TCGA-HNSCC cohort were
downloaded from the GDC (https://portal.gdc.cancer.gov/)
using the “TCGAbiolinks” package in R [25]. The total number
of mutations counted in the whole exon territory was set at
38 Mb, according to a previous study [26]. Moreover, we also
enrolled IMvigor210 (mUC) cohort, which included patients
with metastatic urothelial cancer receiving programmed
death-ligand 1 (PD-L1) inhibitor atezolizumab, to validate the
results we found in HNSCC. Raw gene expression and clinical
data from the IMvigor210 (mUC) cohort were retrieved using
the “IMvigor” package in R (http://research-pub.gene.com/
IMvigor210CoreBiologies) [27]. The detailed clinical informa-
tion of the IMvigor210 (mUC) cohort can be found in Table S3.
Data were analyzed with the R (version 3.5.3) and Bioconductor
packages.

Unsupervised consensus clustering for autophagy-related
patterns (ATPclusters)
Autophagy-related genes (ATGs) were obtained from the
Human Autophagy Database (HADb, http://www.autophagy.
lu/). Then, ATGs were subjected to an unsupervised consensus
clustering algorithm (K-means) based on the Euclidean dis-
tance and Ward’s linkage. This analysis was performed to iden-
tify distinct autophagy-related patterns (ATPclusters) [28]. The
“ConsensuClusterPlus” package in R was applied to perform this
procedure and repeated 1000 times to guarantee the stability of
the classification [29, 30].

Differentially expressed genes (DEGs) between ATPclusters
DEGs were screened out by comparing the patterns with differ-
ent function annotations using the “edgeR” package in R [31],
which implements an empirical Bayesian approach to evaluate
the changes in gene expression in different groups. The signifi-
cance criteria for determining DEGs were set as a false discovery
rate (FDR) < 0.05 and |log2FC| > 1.0.

Estimation of infiltrating immune cells
Single sample gene set enrichment analysis (ssGSEA), which
evaluates the variation in pathway and biological process activ-
ity in a single sample, was utilized to estimate the relative
amount of TIME immune cells in HNSCC using the “GSVA”
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package in R [32, 33]. The basic unit for ssGSEA is a gene
set, consisting of genes that share common biological func-
tion, chromosomal location, or genetic regulation [34]. TIME
infiltrating immune cell types, such as innate immune cells
(dendritic cellss, eosinophils, mast cells, macrophages, NK
cells, neutrophils, etc.) and adaptive immune cells (B cells,
T cells, T helper cells, CD8+ T cells, regulatory T [Treg]
cells and cytotoxic cells, etc.) were derived from the study of
Charoentong et al. [35] and Bindea et al. [36]. The normalized
enrichment score (NES) from the ssGSEA was regarded as the
relative amount of TIME infiltrating immune cells in HNSCC.

Function annotation and pathway enrichment analyses
A series of gene sets were curated from Mariathasan et al. to rep-
resent biological processes related to immune activation, stro-
mal activation, DNA damage repair, and immune checkpoints,
including: (a) Angiogenesis; (b) Antigen processing machinery;
(c) Base excision repair; (d) CD8+ T effector; (e) Cell cycle; (f)
Cell cycle regulators; (g) DNA damage repair 1 and 2; (h) DNA
replication; (i) Epithelial-mesenchymal transition (EMT) 1, 2,
and 3; (j) Fanconi anemia; (k) Homologous recombination; (l)
Immune checkpoint; (m) Mismatch repair; (n) Nucleotide exci-
sion repair; (o) Pan-fibroblast TGF-β response signature (Pan-
F-TBRS), and (p) WNT targets [27, 37, 38].

Construction of autophagy phenotype-related signature
(ATPscore)
In order to define autophagy phenotype in individual patients, a
set of scoring system was required. The DEGs between patterns
were subjected to univariate Cox analysis to generate candi-
date prognostic DEGs at cut-off P value < 0.01. For dimension
reduction, the least absolute shrinkage and selection operator
(LASSO)-Cox regression algorithm for prognostic DEGs was
used to construct an optimal autophagy-phenotype-related sig-
nature (ATPscore) using the “glmnet” package in R [39]. The
optimal values of the penalty parameter λ were determined by
10 cross-validations. The ATPscore of each sample was defined
by the relative expression of candidate prognostic DEGs within
the model and their Cox coefficients. ATPscore = ∑

_(i = 1)ˆn
(coefi × Expri), where Expri is the relative expression of DEG in
the signature for patient i and coefi is the LASSO-Cox coefficient
of DEG i.

Cell culture and silencing of SRPX in head and neck squamous
cell carcinoma (HNSCC) cells
The HNSCC cell lines FaDu and CAL 27 were used for the exper-
iment. The FaDu cells were maintained in minimal essential
medium (MEM; Gibco, China) and CAL 27 cells were maintained
in Dulbecco’s Minimal Essential Medium (DMEM; Gibco, China)
supplemented with 1% penicillin G sodium/streptomycin
sulfate and 10% fetal bovine serum (FBS; Gibco, Australia).
All cells were grown in a humidified atmosphere consisting
of 5% CO2 and 95% air at 37 °C [40]. SRPX-target-specific-
small interfering RNA (siRNA) and negative-control-siRNA
were all synthesized by Genepharma Ltd. in Suzhou, China.
FaDu and CAL 27 were transfected either by SRPX-target-
specific-siRNA (SRPX KD) or negative-control-siRNA (NC)
using Lipofectamine 2000 (Thermofisher, USA) according to

the manufacturer’s protocol. The sequences of each siRNA were
as follows: siRNA-1:5’-GCCATGCCAGCAAATGGAGGGTTTA-
3’, siRNA-2:5’-AGAGACACAGCAGATGGAATTCTTA-3’, siRNA-
3:5’-CACAGCAGATGGAATTCTTACTGAT-3’, si-NC:5’-UUCUCC
GAACGUGUCAGGUTT-3’. After transfection for 72 h, alter-
ations of SRPX at the transcriptional levels were validated by
quantitative real-time PCR (qRT-PCR).

Total RNA isolation and reverse transcription and quantitative
real-time PCR (qRT-PCR)
Total RNA from the HNSCC cells was extracted using the Qiagen
RNeasy Mini Kit (Cat. #74101, Qiagen, Germany) combined with
the QIAshredder from Qiagen (Cat. #79654, Qiagen, Germany)
according to the manufacturer’s protocol. Then, DNase I was
used to remove the contamination of genomic DNA in each
RNA sample (RNase-Free DNase Set, Cat. #79254, Qiagen,
Germany). First-strand cDNA and real-time polymerase chain
reaction (PCR) were performed using the ReverTra Ace qPCR
RT Kit (Toyobo, China) and iQTM SYBR® Green Supermix (Bio-
Rad, China), respectively. The optimal annealing temperatures
and PCR conditions for each primer were optimized with
gradient PCRs using an iCycler (Cat. #CFX Connect, Bio-Rad,
USA). The GAPDH alleles were used as an internal reference.
SRPX primers: 5’-ATCAAGGTGAAGTATGGGGATGT-3’ (for-
ward), 5’-GTTTGACTGGCAGATCAGTAGG-3’(reverse). GAPDH
primers: 5’-ACAACTTTGGTATCGTGGAAGG-3’ (forward),
5’-GCCATCACGCCACAGTTTC-3’(reverse).

Detection of proliferation and migration of HNSCC cells
Distinct HNSCC cells were seeded in 96-well plates at 5000 cells
per 200 μL of medium. Next, HNSCC cells were incubated in the
medium for another 4 days until the 20 μL of Cell Counting Kit 8
(CCK-8) (10 mg/mL) was added. The absorbance was measured
at 450 nm using a microplate reader (Cat. #SpectraMax M2,
Molecular Devices, USA) after the cells were incubated at 37 °C
for 1 h. When HNSCC cells grew to 95% confluence, a wound was
created in the cell monolayer using a 200 μL pipette tip. Then,
0.5% FBS medium was used to allow cells to migrate into the
gap without the influence of serum. Four different equidistant
points of the scratched area were photographically measured
and imaged by an inverted phase contrast microscope (Leica,
Cat. #DMI1) at 0, 24, and 48 h. A 24-well transwell chamber
system (Corning, USA) with 8.0 μm pore size was used to per-
form the migration assay. Distinct HNSCC cells were suspended
in a serum-free medium at a density of 50,000 cells per 100
μL and seeded in the upper chamber insert, while the lower
chamber was filled with 10% FBS medium. After incubation for
24 h at 37 °C, the cells in the upper insert were removed, and
the cells that had migrated to the lower side were fixed with
4% PFA and stained with crystal violet. Then, the migrated cells
were observed and counted using the inverted phase contrast
microscope.

Ethical statement
The entire research followed the principles outlined in the Dec-
laration of Helsinki.
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Statistical analysis
Data were expressed as means ± SD. All analyses were per-
formed at least three times and represent data from three
individual experiments. Two-tailed student’s t-tests were used
to assess the statistical significance of differences between the
groups. Statistical significance of variables between two groups
or more than two groups was analyzed by Wilcoxon tests or
Kruskal–Wallis tests, respectively. Differences between sur-
vival curves for each group were determined by Kaplan–Meier
analysis with log-rank test using the “survminer” package in R.
The distance between different parameters was computed by
Pearson and distance correlation analyses. Independent prog-
nostic factors were identified by univariate and multivari-
ate Cox proportional hazard analysis and visualized with the
“forestplot” package in R. ATPscore was integrated with other
independent factors to establish the nomogram and calibra-
tion curves using the packages “rms”, “nomogramEx”, and “reg-
plot” in R. According to Iasonos’ suggestion, decision curve
analysis (DCA) was used to evaluate the clinical utility of the
nomogram [41]. The mutation landscape of patients in the
TCGA-HNSCC cohort was visualized with a waterfall plot using
the packages “maftools” [42] and “complexheatmap” [43] in R.
Contingency tables, such as the ICIs targeting immunotherapy
response, were analyzed by two-sided Fisher’s exact tests. All
statistical analyses were performed with R software 3.5.3. Sta-
tistical significance was set at P < 0.05.

Results
Characterization of autophagy-related patterns (ATPclusters)
in HNSCC
The workflow of this study is shown in Figure 1. The
TCGA-HNSCC cohort was used as the training set to identify
the autophagy-related patterns (ATPcluster) using the “Con-
sensuClusterPlus” package in R. We found that ATGs could
successfully from five ATPclusters with high stability in the
TCGA-HNSCC cohort, including 175 cases in pattern A, 56 cases
in pattern B, 143 cases in pattern C, 191 cases in pattern D, and
33 cases in pattern E, which was termed as ATPcluster A–E,
respectively (Figure S2A). Unsupervised hierarchical cluster-
ing demonstrated that ATGs were significantly differentially
expressed among ATPcluster A–E in the TCGA-HNSCC cohort
(Figure S2B). Moreover, Kaplan–Meier survival curves showed
that ATPcluster A–E displayed a completely different survival
benefits in which patients with ATPclusters B and E had a
better prognosis than other clusters (Log-rank test, P = 0.0054;
Figure 2C).

Tumor immune microenvironment (TIME) landscape in distinct
ATPclusters
As autophagy played a dual role in TIME, the landscape of
TIME was calculated via the ssGSEA algorithm and shown in
the cluster heat map (Table S4). The relative amount of TIME
immune cells was strikingly different in distinct ATPclusters
as follows (Figure 2A): ATPcluster A exhibited high infiltra-
tion with almost all immune cells; ATPcluster B was remark-
ably rich in effector immune cells, but less infiltrated with

Gene-expression profiling datasets for Head and neck
squamous cell carcinoma (HNSCC)

Removing datasets without
overall survival (OS)

HNSCC datasets (n = 1165): TCGA-HNSCC, GSE39366,
GSE4163, GSE42743, GSE65858 and E-MTAB-1328

Consensus clustering for autophagy related genes and
investigation the relationship with clinicopathological

characteristics of patients in TCGA-HNSCC cohort (n = 498)

Consensus clustering for autophagy related genes and
investigation the relationship with clinicopathological

characteristics of patients in meta-HNSCC cohort (n = 667)

Selection of autophagy phenotype-related genes

LASSO regression for dimension reduction and
construction of autophagy phenotype related signature
(ATPscore) in TCGA-HNSCC and meta-HNSCC cohorts

Relationship between ATPscore with clinicopathological
characteristics in each cohort

Evaluation the efficiency of ATPscore in predicting the ICls
response in IMvigor210 cohort (n = 348)

Discovery study

Validation study

Figure 1. Overview of workflow and study design. LASSO: Least absolute
shrinkage and selection operator; ICI: Immune-checkpoint inhibitor.

immunosuppressive cells; ATPclusters C and D displayed low
infiltration with all immune cells; ATPcluster E was character-
ized by high infiltration with activated CD8+ and cytotoxic cells
but low infiltration with regulatory T cells, macrophages, and
mast cells.

Distinct ATPclusters exhibited different immune
phenotypes
We found that ATPcluster A was highly infiltrated with
immune cells, but patients with this pattern had a worse
prognosis. Recent study has determined three immune phe-
notypes of tumors: desert, excluded, and inflamed. Immune
inflamed phenotype was characterized as high infiltration with
immune cells, while immune desert phenotype showed the
opposite situation. Immune excluded phenotype was consid-
ered cytotoxic T cell suppressive by featuring the infiltra-
tion with abundant immune cells, which were located in the
stroma surrounding the core tumor niche rather than pen-
etrating its parenchyma [44]. We then included a specific
gene set from Mariathasan et al. to investigate the enrich-
ment of key signaling pathways associated with immune
phenotypes. From the TIME landscape and function annota-
tion, ATPcluster A was recognized as an immune-excluded
phenotype as stromal-related signaling pathways, including
angiogenesis, epithelial-mesenchymal transition (EMT), WNT
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Figure 2. Clinicopathological characteristics in distinct autophagy-related patterns (ATPclusters). (A) Hierarchical clustering of TIME landscape in the
TCGA-HNSCC cohort. Rows represent relative amount of each immune cell, and columns represent HNSCC samples. Red represents relatively upregulated
and blue represents relatively downregulated immune cells; (B) Difference in the enrichment of specific signatures to represent biological processes related
with stromal-activation and immune-activation among five distinct autophagy-related patterns in the TCGA-HNSCC cohort; (C) Kaplan–Meier survival curves
for distinct autophagy-related patterns in the TCGA-HNSCC cohort; (D) Differences in TMB among different autophagy-related patterns in the TCGA-HNSCC
cohort. The upper and lower ends of the boxes represent interquartile range of values. The lines in the boxes represent median value; (E) Distribution of top
30 variant mutated genes among five distinct autophagy-related patterns in the TCGA-HNSCC cohort. The genetic alterations types include frame shift del,
frame shift ins, in frame del, in frame ins, missense mutation, multi-hit, nonsense mutation, and splice site. The upper bar plots indicate ATPscore, TMB, and
OS time. The number on the left and right bar plots show the mutation frequency of each gene. TIME: Tumor immune microenvironment; HNSCC: Head and
neck squamous cell carcinoma; TMB: Tumor mutation burden; OS: Overall survival.

target, and pan-fibroblast TGF-β response signaling pathways
(pan-F-TBRS) were strikingly activated, which could hamper
the beneficial effect of high immune cell infiltration (Figure 2B
and Table S5). Furthermore, ATPclusters B and E were remark-
ably associated with the induction of immune activation sig-
naling pathways, including antigen processing machinery,
CD8+ T effector, and immune checkpoint. However, they
were deactivated in stromal-related signaling pathways, repre-
senting the characteristics of an immune-inflamed phenotype
(Figure 2B and Table S5). Moreover, ATPclusters C and D were
more likely to have an immune-desert phenotype (Figure 2B
and Table S5).

Tumor somatic mutations in distinct ATPclusters
The relationship between somatic mutations and autophagy
was also measured. We found that ATPcluster D had the highest
tumor mutation burden (TMB), while ATPcluster B was associ-
ated with the lowest TMB (Figure 2D). Moreover, top 30 highly
variant mutant genes were utilized to plot the somatic muta-
tion landscape among distinct ATPclusters in patients with
HNSCC. ATPcluster D displayed the highest mutation rate of
top 30 mutant genes, especially for TP53 (Figure 2E), which was
identified as key gene in tumorigenesis of HNSCC [45]. But ATP-
clusterB only showed small amount of TP53 mutations, which
was consistent with the TMB calculation. All the above results
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Figure 3. Characterization of autophagy-related patterns (ATPclusters) in the meta-HNSCC cohort. (A) Hierarchical clustering of TIME landscape in the
meta-HNSCC cohort. Rows represent relative amount of each immune cell, and columns represent HNSCC samples. Red represents relatively upregulated
and blue represents relatively downregulated immune cells; (B) Kaplan–Meier survival curves show the difference in prognosis advantage among five distinct
autophagy-related patterns in the meta-HNSCC cohort; (C and D) Difference in the expression of immune activation relevant markers (C), TGF-β/EMT rele-
vant markers (D) among five distinct autophagy-related patterns in the meta-HNSCC cohort; (E) Difference in the enrichment of immune activation, stromal
activation, and DNA damage repair (DDR) relevant signatures among five distinct autophagy-related patterns in meta-HNSCC cohort. The upper and lower
ends of the boxes represent interquartile range of values. The lines in the boxes represent the median value and the black dots show outliers. The asterisks
represent the statistically significant P-value (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). HNSCC: Head and neck squamous cell carcinoma;
TIME: Tumor immune microenvironment; EMT: Epithelial-mesenchymal transition; TGF-β: Tumor growth factor beta.

demonstrated that autophagy-related patterns correlated both
with TIME infiltration and tumor mutation landscape, which
underlies the indispensable role of autophagy in the HNSCC
development.

Validation of ATPclusters in meta-HNSCC cohort
Unsupervised consensus clustering also identified five ATP-
clusters with differential transcriptional profile of ATGs
in meta-HNSCC cohort (Figure S2A and S2B). Moreover,
Kaplan–Meier survival curves demonstrated that the prognosis
of five distinct ATPclusters were strikingly different, with
patients with ATPclusters B and E living longer and patients
with ATPclusters A, C, and D were associated with worse
survival (Log-rank test, P = 0.0022; Figure 3B).

Furthermore, a similar TIME landscape among five distinct
ATPclusters of the TCGA-HNSCC cohort was determined in
meta-HNSCC cohort as follows (Figure 3A and Table S6): ATP-
clusters A and B were more infiltrated with immune cells, while

ATPclusters C and D were less infiltrated. Compared with effec-
tor immune cells (CD4+, CD8+ T cells, and cytotoxic cells),
ATPcluster A exhibited an abundance of immunosuppressive
cells (Treg cells, macrophages, and mast cells). The opposite
situation was found in ATPclusters E and B, where the ratio
of cytotoxic T lymphocytes (CTL), including activated CD8+ T
cells and cytotoxic cells to Treg cells was higher among five ATP-
clusters. ATPclusters C and D displayed the lowest infiltration of
effector immune cells among the five ATPclusters.

Moreover, the ssGSEA of specific gene sets also showed a
similar trend as the TCGA-HNSCC cohort. ATPcluster A was
enriched in both immune and stromal activation signaling
pathways, which could be recognized as immune-excluded
phenotype. ATPclusters B and E were more prominently
enhanced in immune activation gene sets, such as CD8+ T
effector and immune checkpoint, which was more likely to
immune-inflamed phenotype. And ATPclusters C and D were
slightly associated with DNA damage response (DDR)-related
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signaling pathways but were less enriched in immune infil-
tration signaling pathways, which was the characteristic of
immune-desert phenotype (Figure 3E and Table S7).

Then, the major markers representing the immune
phenotypes-related signaling pathways were subsequently
curated as follows: immune activation: CD8A, CXCL10, CXCL9,
GZMA, GZMB, IFNG, PRF1, TBX2, and TNF; TGF-β/EMT signal-
ing pathway: ACTA2, COL4A1, PDGFRA, SMAD9, TGFB1/2/3,
TGFBR1/2/3, TWIST1/2, VIM, and ZEB1/2. Surprisingly, the
expression of the above markers showed a similar distribution
as the biological processes and pathways enrichment among
distinct ATPclusters (Figure 3C and 3D).

Establishment of autophagy phenotype-related signature
(ATPscore)
The above findings revealed that there were distinct
autophagy-related patterns in HNSCC and demonstrated an
essential role of autophagy in shaping TIME landscapes,
but all analyses were performed in cohorts with patient
population. Due to the heterogeneity of individuals, there
was an urgent need to construct a set of scoring system
to quantify the autophagy-related patterns in individual
patients with HNSCC. By comparing the transcriptomic profiles
of the main autophagy-related patterns, we obtained 5734
phenotype-related meta-DEGs (Table S8). Then, 383 of the
5734 meta-DEGs which were significantly correlated with prog-
nosis were identified as autophagy phenotype candidate genes
(Table S9). Furthermore, LASSO-Cox regression analysis was
utilized for dimension reduction on these genes to construct
an autophagy phenotype-related signature (ATPscore) which
was representative of autophagy-related pattern in individuals.
Finally, 11 genes were selected to create ATPscore and the
formula was as follows:
ATPscore = ACTL10*(−0.0729) + C19orf57*(−0.0292)
+ CHAD*(−0.0801)+ FCN2*(−0.3865) + FGB*(0.1961)
+ GPR174*(−0.0437) + HSF5*(−0.0126) + SERPINA5*(0.1589)
+ SRPX*(0.0322) + ZNF541*(−0.033) + ZNF831*(−0.3632).

The Kaplan–Meier survival curves showed that patients with
the low ATPscore lived longer than patients with the high ATP-
score in the TCGA-HNSCC cohort (Log-rank test, P < 0.00001;
Figure 4A). Then, we found that ATPscore was differentially
distributed among the five ATPclusters: ATPcluster A with poor
prognosis showed the highest median score while ATPclus-
ter B with good prognosis showed the lowest median score
(Kruskal–Wallis test, P < 2.2e-16; Figure 4B). Moreover, func-
tion annotation demonstrated that immune activation gene
sets, such as antigen processing machinery, CD8+ T effector,
and immune checkpoint, were strikingly induced in the low
ATPscore group, while stromal-relevant signaling pathways
were enhanced in the high ATPscore group (Figure 4D). Then,
ATPscore was found to be negatively correlated with immune
activation signature and positively correlated with the stro-
mal activation signature through Pearson correlation analysis
(Figure 4C and Table S10).

The role of ATPscore was validated in the EMTAB1328,
GSE41613, and GSE42743 meta-cohorts. Cluster heat map
demonstrated that TIME infiltration distribution among five

ATPclusters was similar to the meta-HNSCC cohort (Figure 5A
and Table S11). Moreover, we could clearly see that the amount
of effector immune cells, including CD8+ T cells and cytotoxic
cells, was robustly accumulated in the low ATPscore group
when compared with the high ATPscore group in ATPclusters
A, B, and E (Figure 5A). The Kaplan–Meier survival curves
demonstrated that patients with the low ATPscore had bet-
ter prognosis than patients with the high ATPscore (Log-rank
test, P = 0.0196; Figure 5C). Moreover, ATPscore was signif-
icantly positively correlated with angiogenesis, EMT, Pan-F-
TBRS, and WNT targets signatures, and negatively correlated
with antigen processing machinery, CD8+ T effector, and
immune-checkpoint signatures (Figure 5B–5D and Table S12
and S13). All the above results strongly suggested that ATPscore
is a good representative of autophagy-related patterns and is
competent at distinguishing immune phenotypes in HNSCC.

ATPscore could be utilized as an independent prognostic factor
in HNSCC
Next, we wanted to clarify the association between ATPscore
and clinical characteristics in HNSCC. The results showed that
patients in the high ATPscore group were more likely to be
a more advanced pathological TNM stage, HPV-negative, and
smokers. They tended to have a treatment outcome of stable dis-
ease (SD), progressive disease (PD), with tumor, and deceased
status. However, no correlation was observed with a history of
alcohol consumption. The opposite patterns could be seen in the
low ATPscore group (Figure S4A–S4L).

Because gene mutation and TMB were remarkably different
in five ATPclusters, waterfall plots also revealed that TP53 and
CDKN2A were differentially mutated between the high and low
ATPscore groups (Figure 4G). Kaplan–Meier survival curves
demonstrated that the prognosis of patients with TP53 mutation
was robustly worse than that of patients with TP53 wild type
(WT) (data not shown). We were amazed to find that patients
with TP53 mutations displayed higher ATPscore (Figure 4F).
Although mutation of CDKN2A was not correlated with patient
survival, patients with the high ATPscore were also more likely
to have CDKN2A mutation (Figure 4E).

Furthermore, univariate and multivariate Cox regression
analyses demonstrated that the ATPscore, pathological T stage,
pathological N stage, and sex were independent factors that
could be used to predict the prognosis of HNSCC patients
(Figure 6A and 6B and Table S14). We then constructed a nomo-
gram by integrating the above independent prognostic factors
to serve as a clinically relevant quantitative method for clini-
cians to predict mortality in patients with HNSCC (Figure 6C).
Using the nomogram, each patient would receive a total point by
adding the points for each prognostic parameter. The patients
having higher total points corresponded to a worse clinical
outcome. The calibration plots and DCA demonstrated that
our nomogram had a similar performance to that of an ideal
model and had high potential clinical utility (Figure 6D–6G). All
of these demonstrated that ATPscore could not only estimate
the autophagy-related pattern of individual and characterize
immune phenotypes but also further act as an independent
prognostic factor in HNSCC.
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Figure 4. Establishment of autophagy phenotype-related signature (ATPscore) in the TCGA-HNSCC cohort. (A) Kaplan–Meier survival curves show
the difference in prognosis between the high and low ATPscore groups in the TCGA-HNSCC cohort; (B) Difference in ATPscore among five distinct
autophagy-related patterns in the TCGA-HNSCC cohort. Kruskal–Wallis test was used to compare the statistical difference between each pattern;
(C) Correlation between ATPscore and stromal-activation, immune-activation, and DDR-relevant signatures in the TCGA-HNSCC cohort. Negative correlation
is marked with red and positive correlation is marked with blue; (D) Difference in the enrichment of specific signatures to represent biological processes
related with stromal-activation, immune-activation, and DDR between the high and low ATPscore groups in the TCGA-HNSCC cohort; (E) Differences in
ATPscore between patients with CDKN2A mutation and CDKN2A WT in the TCGA-HNSCC cohort. The statistical difference was tested by Wilcoxon test;
(F) Differences in ATPscore between patients with TP53 mutation and TP53 WT in the TCGA-HNSCC cohort. The statistical difference was tested by the
Wilcoxon test; (G) The waterfall plot shows the distribution of top 30 highly variant mutated genes between the high and low ATPscore groups. The
genetic alterations types are indicated in the waterfall plot annotation. The asterisks represent the statistically significant P-value (*P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001). HNSCC: Head and neck squamous cell carcinoma; DDR: DNA damage repair; WT: Wild type.
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Figure 5. Validation of autophagy phenotype-related signature (ATPscore) in the microarray-HNSCC cohort. (A) Hierarchical clustering of TIME
landscape in the microarray-HNSCC cohort; (B) Correlation matrix of ATPscore and stromal-activation, immune-activation, and DDR relevant signatures
in the microarray-HNSCC cohort; (C) Kaplan–Meier survival curves show the difference in prognosis between the high and low ATPscore groups in the
microarray-HNSCC cohort; (D) Difference in the enrichment of specific signatures to represent biological processes related with stromal-activation, immune-
activation, and DDR between the high and low ATPscore groups in the microarray-HNSCC cohort. The asterisks represent the statistically significant P-value
(*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). HNSCC: Head and neck squamous cell carcinoma; TIME: Tumor immune microenvironment;
DDR: DNA damage repair; ATPscore: Autophagy phenotype-related signature.

ATPscore was potent to predict clinical response to
immune-checkpoint inhibitors (ICIs) immunotherapy
Recently, ICIs immunotherapy has emerged as a major break-
through in the treatment of solid tumors. The above findings
demonstrated that the ATPscore could not only distinguish the
prognosis of patients but also determine TIME infiltration and
immune phenotype, which indirectly confirmed its potential
role in predicting clinical response to ICIs treatment. Then,
the IMvigor210 (mUC) cohort was used to study the role of
ATPscore in evaluating immunotherapeutic benefits, which
consisted of patients with metastatic urothelial cancer receiv-
ing PD-L1 inhibitor with atezolizumab. Kaplan–Meier survival
curves showed that patients with the low ATPscore had a signif-
icantly better clinical outcome compared with patients with the
high ATPscore (Log-rank test, P < 0.001, Figure 7A).

A previous study reported that ICIs treatment responders
were more likely to be patients with the genomically unstable
(GU) subtype in the Lund classification system and TCGA II sub-
type in the TCGA classification system, using the IMvigor210
(mUC) cohort. Here in the cluster heat map, we found that the

low ATPscore group exhibited an abundance of activated B,
activated CD4+, CD8+ T cells, and cytotoxic cells, but was less
infiltrated with Treg, macrophages, and mast cells in patients
with GU and TCGA II subtypes (Figure S5A). Moreover, ssGSEA
of specific gene sets showed that antigen processing machinery
(APM), CD8+ T effector, and immune checkpoints signature,
representing the immune activation, were strikingly enriched
in the low ATPscore group (Figure 7F). The markers associated
with immune activation showed a similar trend to function
annotation (Figure 8E). However, we found that the EMT signa-
ture was slightly activated in the low ATPscore group, but Pan-
F-TBRS and WNT-target signatures were strikingly enriched
in the high ATPscore group (Figure 7F and Figure 8F). Most
markers related to EMT/TGF-β signaling pathways were not
differentially expressed between two groups, which indicated
that ATPscore might not distinguish the stromal pattern in
the IMvigor210 (mUC) cohort. The results of the correlation
matrix were almost identical to the above findings (Figure 7E).
Moreover, we were amazed to find that the patients with the
immune-inflamed phenotype had the lowest ATPscore, while
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patients with the immune-desert phenotype had the highest
ATPscore (Kruskal–Wallis test, P = 2.2e-6; Figure 7D). The num-
ber of patients with immune-inflamed phenotype was twice as
high than in the low ATPscore group when compared with that
in the high ATPscore group (Fisher’s exact test, P < 0.00001;
Figure 8D). All this definitely confirmed our hypothesis that
autophagy was able to shape the TIME infiltration and distin-
guish the immune phenotype.

Although ATPscore showed no correlation with TMB in
the TCGA-HNSCC cohort, we were surprised to find that
there was a negative correlation between TMB and ATPscore
in the IMvigor210 (mUC) cohort (Wilcoxon test, P = 0.036;
Figure 7B and Fisher’s exact tests, P = 0.033886; Figure 7C).
Kaplan–Meier survival curves revealed that the survival benefit
of patients with high TMB was superior to that of patients with
low TMB (Log-rank test, P < 0.001; Figure 7D). Moreover, we
combined the information of ATPscore and TMB to find that
patients with low ATPscore as well as with high TMB exhibited

a tremendous survival advantage over all other subgroups
(Log-rank test, P < 0.001; Figure 7D). We then comprehen-
sively explored the role of ATPscore in the entire IMvigor210
(mUC) cohort, as it contained much information associated
with immunotherapy response. We found that the GU subtype
and TCGA II subtype, which displayed high somatic mutation
and more likely responded to ICIs treatment, demonstrated the
lowest ATPscore when compared with other molecular sub-
types in the Lund and TCGA classification systems, respec-
tively (Kruskal–Wallis test, P = 8e-8; Figure 8G; Kruskal–Wallis
test, P = 2.6e-5; Figure S5D). The number of patients with
the GU subtype and TCGA II subtype in the low ATPscore
group was more than twice that in the high ATPscore group
(Fisher’s exact test, P = 0.010413; Figure 8H; Fisher’s exact test,
P = 0.116173; Figure S5E). Furthermore, the correlation between
ATPscore and the immune checkpoint PD-L1 located on tumor
cells (TC) or immune cells (IC) was also measured. Surprisingly,
we found that most of patients with IC2, which was correlated
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Figure 7. Autophagy phenotype-related signature (ATPscore) was also efficiency in IMvigor210 dataset. (A) Kaplan–Meier survival curves show the
difference in prognosis between the high and low ATPscore groups in the IMvigor210 (mUC) cohort; (B) Difference in TMB between the high and low
ATPscore groups in the IMvigor210 (mUC) cohort; (C) The proportion of TMB between the high and low ATPscore groups in the IMvigor210 (mUC) cohort;
(D) Kaplan–Meier survival curves show the difference in prognosis advantage among four groups stratified by ATPscore and TMB in the IMvigor210 (mUC)
cohort; (E) Correlation between ATPscore and specific signature in the IMvigor210 (mUC) cohort. Blue indicates positive correlation and red indicates
negative correlation; (F) Difference in the enrichment of specific signature between the high and low ATPscore groups in the IMvigor210 (mUC) cohort.
CR: Complete response; PR: Partial response; SD: Stable disease; PD: Progressive disease. CR/PR was identified as responder and SD/PD was identified as
non-responder; ICI: Immune-checkpoint inhibitor; TMB: Tumor mutation burden; PD-L1: Programmed death-ligand 1.

with better clinical outcome of immunotherapy, were con-
centrated in the low ATPscore group, while IC0 strikingly
accumulated in the high ATPscore group (Fisher’s exact test,
P = 0.000136; Figure 8A). Moreover, patients with IC2 showed
the lowest ATPscore and patients with IC0 showed the high-
est ATPscore (Kruskal–Wallis test, P = 5.2e-9; Figure 8B). We
found no difference in ATPscore among patients with TC0-TC2
(Kruskal–Wallis test, P = 0.34; Figure S5B; Fisher’s exact test,
P = 0.728113; Figure S5C). In addition, we were delighted to
find that patients with the low ATPscore were more likely to
be ICIs treatment responders (complete remission [CR]/partial
remission [PR]), while patients with high ATPscore tended to
be non-responders (SD/PD) (Kruskal–Wallis test, P = 0.00037;
Figure 8I). Moreover, the number of patients who responded
to ICIs immunotherapy (CR/PR) was more than twice as high
in the low ATPscore group as that in the high ATPscore group
(Fisher’s exact test, P = 0.006009; Figure 8J). All our findings
implied that there are distinct autophagy-related patterns in
tumors, which could shape the TIME infiltration and immune
phenotypes, as well as predict the clinical outcome of ICIs
immunotherapy.

SRPX was negatively correlated with HNSCC cell proliferation
and migration
In order to validate our findings, we silenced the expression of
SRPX in two HNSCC cell lines (CAL27 and FaDu). The qRT-PCR

(Figure 9A and 9B) validated that si-1 and si-3 efficiently
silenced the gene and protein expression of SRPX in HNSCC
cells and was selected for subsequent study. Next, we found that
SRPX-target-specific-siRNA (SRPX KD)-treated HNSCC cells
grew more slowly than the control-siRNA (NC)-treated HNSCC
cells, which were detected using the CCK-8 assay (Figure 9C
and 9D). Additionally, wound healing (Figure 9E and 9F) and
transwell assays (Figure 9G and 9H) revealed that HNSCC cells
migrated significantly less after SRPX silencing.

Discussion
In recent years, the key topics on cancer research have
shifted from focusing on the tumor itself to studying the
interaction between the tumor and its surrounding environ-
ment, commonly referred as to tumor microenvironment.
Tumor microenvironment. in which tumor cells originate
and live, includes not only the tumor cells themselves but
also their surrounding stroma, microvasculature, and a vari-
ety of other cells, including immune cells, fibroblasts, and
more, as well as the biological molecules they secrete, such as
cytokines and chemokines [46]. They cooperate with each other
to create a chronic inflammatory, immunosuppressive, and
tumor-promoting environment so that tumor cells can escape
immune surveillance and survive against effector immune cells
attack [47].
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Under normal circumstances, autophagy degrades and
recycles cytoplasmic components to maintain protein synthesis
and other necessary metabolic functions, which is considered
to be an endogenous defence mechanism [48–50]. However,
autophagy can also promote or inhibit tumor progression in
a variety of ways, depending on the background, which is
thought to be a “double-edged sword” in tumors. Autophagy
has been reported to regulate the interaction of tumor cells

with various substances within surrounding milieu, especially
immune system components that include B and T lymphocytes,
dendritic cells, macrophages, and NK cells, as well as the
cytokines and immunoglobulins they released [20]. Conversely,
immune cells and the cytokines and antibodies they released
could trigger autophagy dysfunction, which induces or sup-
presses tumorigenesis. Furthermore, the autophagy-mediated
regulation of the immune system might strengthen or attenuate
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the effects of immunotherapy. Autophagy has been reported to
enhance the effect of immunotherapy by exposing antigens to
antigen-presenting cells (APCs) and CTL to initiate and execute
the process of tumor recognition and elimination. Otherwise, a
growing number of studies have demonstrated that autophagy
could also attenuate the effects of immunotherapy by inducing
an immunosuppressive atmosphere. This hinders the ability of
effector immune cells to kill tumor cells [51]. These indicated
that appropriate induction or inhibition of autophagy may
represent a prospective therapeutic strategy when combined
with chemotherapy, radiotherapy, and immunotherapy. But
comprehensive and systematic analysis of the correlation
between autophagy and tumor microenvironment has not yet
been fully identified, which impedes the clinical development
of autophagy-based activators or inhibitors.

In this study, we gathered ATGs to determine
autophagy-related patterns through unsupervised consensus
clustering. Five distinct autophagy-related patterns (ATP-
clusters) were identified with differential ATGs expression,
survival benefit, TIME infiltration, and function annotation. In

the TCGA-HNSCC cohort, ATPclusters A and B exhibited high
TIME infiltration, while ATPclusters C–E were relatively less
infiltrated with immune cells. Kaplan–Meier survival curves
showed that the prognosis of patients with ATPclusters B and
E was robustly better than that of patients with ATPclusters A,
C, and D, which was not consistent with the findings related to
TIME infiltration. We noticed that ATPclusterA was infiltrated
with both effector immune cells and immunosuppressive
cells, while ATPclusters B and E were highly infiltrated with
activated CD8+ T cells and cytotoxic cells and less infiltrated
with Treg, macrophages, and mast cells. Thus, we inferred that
highly infiltrated immunosuppressive cells could counteract
and impair effector immune cells to distinguish and eradicate
abnormal tumor cells. As the opposite function of CTL and Treg
in tumor immunity, a combined assessment of CTL and Treg
infiltration has been comprehensively studied. The CTL/Treg
ratio has finally been recognized as an independent prognostic
factor in many tumor types [52, 53]. In our study, we found
that CTL/Treg ratio was significantly higher in ATPclusters B
and E than in ATPclusters A, C, and D, which well explains
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the mismatch of immune infiltration and survival analysis.
Moreover, function annotation demonstrated that ATPcluster
A was not only enriched in signaling pathways associated
with inflammation but also induced in angiogenesis, EMT,
and pan-fibroblast TGF-β response signaling pathways. This
indicated that the stromal status was relatively activated in
this pattern. The stromal status, which could reversibly shift
between “loose” and “dense” status, is the key checkpoint for the
appropriate localization and migration of T cells into the tumor
parenchyma. As activated in stromal status, effector immune
cells cannot effectively penetrate the stroma surrounding core
tumor islets, leaving a large number of CTL strapped in the
extracellular matrix, thus unable to perform their antitumor
role of immune surveillance and eradication, allowing the
tumor to progress in ATPcluster A, which was the characteristic
of immune-excluded phenotype [54]. In addition to the lack of
activated and priming T cells, ssGSEA of KEGG, HALLMARK,
and specific signatures all revealed that immune tolerance
and ignorance were fully induced in ATPclusters C and D,
which was more likely to be to immune-desert phenotype [55].
Moreover, we also found that despite being highly infiltrated
with effector immune cells, the antigen processing machinery,
CD8+ T effector, and immune checkpoint signature, which
were representative of immune activation, were also strikingly
enriched in ATPclusters B and E, which was featured as
immune-inflamed phenotype. Furthermore, the expression
of immune activation, stromal activation, MHC molecules,
and immune checkpoints showed similar distribution pat-
tern as the function annotation. Recently, many teams have
defined the non-inflamed or immune-suppressed tumors with
immune-excluded and immune-desert phenotypes as “cold”
tumors and tumors with immune-inflamed phenotype as “hot”
tumors, which might be responsible for the clinical response to
ICIs immunotherapy [56, 57]. Next, we systematically collected
transcriptome datasets of HNSCC across GEO and ArrayExpress
database and merged them as the meta-HNSCC cohort. We
were amazed to find that all of the above results could be
precisely validated in the meta-HNSCC cohort. All of these
suggested that there are distinct autophagy-related patterns
associated with signaling pathway enrichment, TIME infil-
tration, and immune phenotypes in HNSCC, which provides
the possibility of combining autophagy activators or inhibitors
with ICIs.

Accumulated evidence demonstrated that tumor patients
with immune-inflamed phenotype will achieve durable
responses and better overall survival when receiving ICIs
treatment [55]. But, we also noticed that not all patients
benefit from ICIs-targeting therapy, with an estimated response
rate only modestly above the historical 10% response rate to
traditional chemotherapies [37]. Immune tolerance to these
tumors is still a major impediment in cancer immunotherapy.
To improve the efficacy of immunotherapy and prolong survival
after immunotherapy, we need to clarify the underlying
mechanisms of immune tolerance. Many important factors
affecting immune tolerance have been identified, such as
hypo-infiltration of effector immune cells into the tumor
parenchyma, imbalance between effector immune cells and

immunosuppressive cells, abnormalities in the function
and expression of MHC molecules, and lack of exposure
to tumor antigens or epitopes leading to failure of antigen
processing for T cells [58]. As highly correlated with TIME
infiltration and immune phenotypes, the association between
autophagy-related pattern and tumor mutation load was
further investigated. The previous study demonstrated that
the recognition of neo-antigens exposure, mainly triggered
by somatic nonsynonymous mutations, was essential for the
initiation of the antigen processing and activation of the
adaptive tumor immunity cascade. Moreover, TMB, which
could be easily assessed to replace the overall neo-antigen
detection, has been identified as a potential biomarker for
predicting the clinical outcome of ICIs treatment [59, 60]. In
the TCGA-HNSCC cohort, we found that TMB was differentially
distributed among five distinct autophagy-related patterns,
with ATPcluster B showing the lowest TMB and ATPclusterD
showing the highest TMB, which is not consistent with the
results of TIME infiltration and function annotation. However,
we were surprised to find that patients with high TMB in the
TCGA-HNSCC cohort were associated with a worse prognosis
than patients with low TMB. This indicated that TMB is harmful
in the TCGA-HNSCC cohort, which contradicted our common
sense. However, we then found that DNA damage repairing
signaling pathways were significantly enriched in ATPclusters
B and E, which might be another reason for the good prognosis
in this pattern.

Then autophagy phenotype-related genes, which were
extracted from the DEGs among distinct autophagy-related
patterns, were subjected to LASSO-Cox regression analysis
to establish a set scoring system to evaluate and quantify
autophagy regulation pattern in individuals, which was
referred to the autophagy phenotype-related signature (ATP-
score). ATPscore was found to be differentially distributed
among five distinct autophagy-related patterns. We further
explored the effect of SRPX, one of the key genes of ATPscore
in HNSCC cells and the results indicated the low expression
of SRPX could significantly decrease the proliferation and
migration of HNSCC.

In recent years, a great number of scoring systems have
been established to predict the prognosis and clinical treat-
ment response of HNSC patients. Yin et al. [61] developed a
prognostic risk model for HNSCC based on m6AlncRNAs that
could predict the prognosis and response to immunotherapy in
HNSCC. Although they did a great work, their research included
merely 400 samples and lacked external validation. Meanwhile,
Wei et al. [62] identified genes associated with ferroptosis
prognostic score by weighted correlation network analysis
(WGCNA) and LASSO, and further constructed a clinical prog-
nostic model of ferroptosis-related prognostic risk score (FPRS).
However, their research did not pay much attention to the
function of score-related genes. In our research, we included
6 datasets as well as over 1000 research samples and we also
verified the function of SRPX in various cell lines, which make
our conclusions more credible.

Moreover, in the TCGA-HNSCC, microarray-HNSCC, and
IMvigor210 (mUC) cohorts, we were pleased to find that the
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low ATPscore group was significantly enriched in immune acti-
vation relevant signaling pathways and deactivated in stromal
relevant signaling pathways, which is characteristic of a “hot”
tumor. Thus, the opposite phenomenon was seen in the high
ATPscore group, corresponding to “cold” tumor. In addition,
we validated these in the IMvigor210 (mUC) cohort to find
that immune-inflamed phenotype had the lowest ATPscore,
while immune-desert and immune-excluded phenotypes had
the higher ATPscore, which indicated the successful model con-
struction. All the above results revealed that ATPscore was
not only a reliable tool to assess autophagy-related pattern but
also was potent to effectively evaluate TIME infiltration and
immune phenotype in individuals. In addition, we found that
patients with good clinical outcomes, as well as low malignancy
clinicopathological traits and molecular subtypes were more
likely to be in the low ATPscore group, while the opposite
patterns were observed in the high ATPscore group. In the
IMvigor210 (mUC) cohort, we found that patients with GU and
TCGA II molecular subtypes, as well as IC2 phenotypes, which
was reported to highly respond to ICIs-targeting immunother-
apy, were robustly concentrated in the low ATPscore group, and
rarely observed in the high ATPscore group [27, 37]. Moreover,
we found that TMB did not differ between the high and low
ATPscore groups in the TCGA-HNSCC cohort. But the patients
in the high ATPscore group were more likely to have a TP53
mutation, again indicating the role of ATPscore in predicting
the ICIs immunotherapy response, as mutation status of TP53
could have predictive value for immunotherapy in patients
with HNSCC [63]. Although TMB did not perform well in the
TCGA-HNSCC cohort, we found here in the IMvigor210 (mUC)
cohort that ATPscore was negatively correlated with TMB and
patients with the low ATPscore group were more likely to be
patients with high TMB, which was consistent with findings
in GU molecular subtype with high mutation load. Moreover,
Kaplan–Meier survival curves showed that the combination
of ATPscore and TMB could significantly improve the predic-
tive value when compared with TMB or ATPscore alone, with
patients with low ATPscore and high TMB having the best prog-
nosis. Finally, we found that patients with low ATPscore were
more likely to benefit from ICIs treatment and ICIs targeting
immunotherapy responders had a lower ATPscore. According
to all these findings, autophagy-related patterns and ATPscore
were found to be significantly correlated with three main fac-
tors: pre-existing activated CTL or immunoreactivity, activa-
tion of the EMT/TGF-β signaling pathway or stromal status,
and tumor neo-antigen or TMB levels to influence the clinical
outcome of ICIs immunotherapy.

Conclusion
We comprehensively and systematically assessed distinct
autophagy-related patterns and established a set scoring
system ATPscore that could represent them and was associ-
ated with TIME infiltration, immune phenotypes, molecular
subtypes, genetic variations, clinical outcome of ICIs targeting
immunotherapy, etc. The effect of SRPX was also verified
in the HNSCC cell line. More importantly, this study has
yielded novel insights into the combination of autophagy-based

inducers or inhibitors with various therapeutic strategies such
as immunotherapy for clinical application in HNSCC.
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