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TRANSLATIONAL AND 
CLINICAL RESEARCH

INTRODUCTION

Neonatal necrotizing enterocolitis (NEC) is one of the 
causes of neonatal death. Surviving newborns are likely to 
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ABSTRACT

Neonatal necrotizing enterocolitis is a severe neonatal intestinal disease. Timely, the identification of surgical indications is essential for 
newborns to seek the best time for treatment and improve prognosis. This paper attempts to establish an algorithm model based on multi-
modal clinical data to determine the features of surgical indications and construct an auxiliary diagnosis model. The proposed algorithm adds 
hypergraph constraints on the two modal data based on Joint Non-negative Matrix Factorization, aiming to mine the higher-order correlations 
of the two data features. In addition, the adjacency matrix of the two kinds of data is used as a network regularization constraint to prevent 
overfitting. Orthogonal and L1-norm regulations were introduced to avoid feature redundancy and perform feature selection, respectively, 
and confirmed 14 clinical features. Finally, we used three classifiers, random forest, support vector machine, and logistic regression, to perform 
binary classification of patients requiring surgery. The results show that when the features selected by the proposed algorithm model are classi-
fied by random forest, the area under the ROC curve is 0.8, which has high prediction accuracy.
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have intestinal stenosis, short bowel syndrome, and even 
short bowel syndrome. There are many serious sequelae, such 
as abnormal nervous system development [1]. About 2-5% of 
infants admitted to a neonatal intensive care unit (NICU) will 
have NEC, of which 20-40% require surgical intervention, and 
the mortality rate ranges from 20% to 35% [2,3]. The treatment 
for newborns with NEC is mainly divided into conventional 
medical treatment and surgical operation. Surgical treatment 
should be considered if conservative medical treatment fails 
or the disease progresses [4,5]. At present, intestinal perfora-
tion is the only absolute indication for the NEC surgery, and 
other indications are controversial [6-8].

Abdominal plain radiographs and clinical tests play an 
essential role in determining the timing of NEC surgical inter-
vention. Abdominal plain radiographs have high specificity 
for NEC, but low sensitivity, and can only assist doctors in 
decision-making to a certain extent. It is necessary to make 
a timely diagnosis of NEC in combination with clinical test 
results. General clinical examination includes five types of 
biochemical analysis, blood routine, and blood gas analysis. 
Comprehensive analysis of whether the newborns need sur-
gery through plain abdominal film and clinical study is signifi-
cant for their prognosis and survival rate.

Joint non-negative matrix factorization (JNMF) [9] has 
been widely used in multimodal data fusion. It works by map-
ping the features of different modalities to a shared space where 
other heterogeneous variables are clustered in different direc-
tions. Based on this algorithm, many scholars have innovated 
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edge including the pubic symphysis, so as to reduce the radia-
tion dose of scattered rays.

Newborns were classified according to birth weight: 
(1)  There were five extremely low birth weight newborns 
(birth weight <1000 g); (2) there were 11 very low birth weight 
newborns (1000 g ≤ birth weight < 1500 g); (3) there were 19 
low birth weight newborns (1500 g ≤ birth weight < 2500 g); 
and (4) there were 10 normal birth weight newborns (2500 g 
≤ birth weight < 4000 g). Newborns were classified according 
to gestational age: (1) There were eight term infant newborns 
(37 weeks ≤ gestational age < 42 weeks) and (2) there were 37 
preterm infants (weeks gestational age < 37 weeks). Newborns 
were classified according to the age of weeks after birth: 
(1) There were 15 early newborns (age < 1 week). (2) There were 
25 late newborns (1 week ≤ age < 4 weeks). (3) There were five 
other newborns (4  weeks ≤ age). Newborns were classified 
according to gender: There were 25 male and ten female new-
borns. There were 37 newborns delivered naturally and eight 
newborns delivered by cesarean section. There were 31 new-
borns who were twins and 14 newborns who were singletons.

Data preprocessing

For the abdominal plain film image data, we used the 
pyradiomics package to extract the radionics features of the 
original image lesions including first order, first shape, and sev-
eral texture features, including first-order statistics, first shape 
statistics, Gray-Level Co-Occurrence Matrix (GLCM), Gray-
Level Run-Length Matrix (GLRLM), Gray-Level Size Zone 
Matrix (GLSZM), Gray-Level Dependence Matrix (GLDM), 
and Neighborhood Gray Tone Difference Matrix (NGTDM). 
Finally, 115 radiomic features were obtained.

For clinical data, we obtained a total of 79 indicators that 
are clinically closely related to NEC, and we used the l2 norm to 
standardize the two kinds of data to ensure the non-negativity 
of the input data. Finally, we obtained two feature matrices X1 
∈ R45×115 and X2 ∈ R45×79, corresponding to plain abdominal film 
and clinical examination data, respectively.

Method

This section describes the fusion of radionics and clinical 
features to identify features relevant to NEC diagnosis. As 
shown in Figure 1, we detail the overall pipeline of our algo-
rithm. First, we extract features from two different modal 
data and organize them into two feature matrices. Each row 
represents a sample, and each column represents a sample 
feature. To further extract higher-order parts of the data, we 
introduce hypergraph constraints. In addition, to further 
strengthen the correlation of the two data, we add the adja-
cency matrix of the two data features as the network regular-
ization constraint. Finally, to dig deeper into the diagnostically 

to adapt to data types of different backgrounds and modalities. 
Deng et al. [10] applied the algorithm to the imaging genetics 
of lung adenocarcinoma by fusing the characteristics of case 
images, copy number variation, and DNA methylation data and 
adding network regularization constraints based on the JNMF 
algorithm. To improve the degree of association between dif-
ferent data, orthogonal constraints are added to remove redun-
dant features and reduce the algorithm’s time complexity.

On this basis, this paper makes further innovations to adapt 
to NEC’s abdominal plain film data and clinical data. A hyper-
graph-based multi-constraint joint non-negative matrix factor-
ization (HB-MCJNMF) is proposed, which innovatively uses 
hypergraphs to mine higher-order relationships between two 
data features. In addition, the algorithm was induced to mine 
features that are diagnostically meaningful for both diagnostic 
groups by introducing the patient’s diagnostic status (whether 
or not to undergo surgery). Experimental results show that the 
proposed HB-MCJNMF algorithm can identify specific asso-
ciation patterns of different diagnostic groups and mine clin-
ical features with diagnostic significance. Area Under Curve 
(AUC) is defined as the area under the Receiver Operators 
Characteristic (ROC) curve enclosed by the coordinate axis. 
We performed classification using random forests, support 
vector machines, and logistic regression. Among them, the 
AUC for classification using random forest reaches 0.8.

MATERIALS AND METHODS

Data sources

This study was approved by the Medical Ethics Committee 
of the Children’s Hospital (Approval Letter of IRB/EC, 2022-
IRB-030) and waived the need for written informed consent 
from patients, as long as patient data remained anonymous. 
All of the methods were carried out by the Declaration of 
Helsinki.

This paper retrospectively collected the clinical diag-
nosis and treatment data of 45 newborns with NEC from a 
children’s Hospital, including abdominal plain film and test 
data (biochemical Wuchang, blood routine and blood gas). 
Abdominal plain film was marked by radiologists with at least 
8  years of experience. Standard abdominal X-ray plain film 
requirements are as follows: (1) The baby lay on his back on 
the stage and the nurse raised his arms and clamped his head 
and hands together; (2) keep the head, shoulders, and knees of 
the newborns close to the photography stage, and the middle 
of the body faces the center line of the table to ensure that the 
body position will not be skewed; (3) align the center line with 
the midpoint of the connecting line between xiphoid process 
and pubic symphysis, and vertically ingest the detector; and 
(4) the projection field shall be as small as possible, with the 
upper edge including the diaphragmatic surface and the lower 
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meaningful features of the two types of patients, we included 
the diagnostic information of the two types of patients. The 
performance of the proposed algorithm is verified using a 
variety of classifiers for classification through correlation anal-
ysis of elements in essential modules.

JNMF

Xi∈Rn×pi denotes the original matrix of different modes, 
Wi∈Rn×k denotes the decomposed base matrix, and HI∈Rk×pi 
denotes the decomposed original matrix Coefficient Matrices. 
To extract common modules among the three data matrices, 
the JNMF algorithm decomposes Xi into a common basis 
matrix W and multiple coefficient matrices Hi (i=1,2,…):

Xi≈WHi     s.t. W>0, Hi>0, i=1,2,… (1)
Define its objective function as follows:

=

 
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Hypergraph learning

Unlike traditional graph methods, hypergraphs can con-
nect more than two vertices through hyperedges, that is, an 
extension of the hypergraph simple graph. Therefore, we 
can use hypergraph to mine the higher-order relationships 
between the features of each modality data for modeling [11,12].

Considering that the relevant content of hypergraph rep-
resentation has been given in [13], in this paper, we continue 
to explore the representation of symbols in hypergraph, as 

described below. We let G (V, E, a) represent the hypergraph, 
where V is the set of vertices, E is the set of hyperedges, and a is 
the set of weights of the hyperedges. Each hyperedge ei (i=1,…
,Ne) is assigned a weight a (ei). For a hypergraph G, we define 
its association matrix H. H is used to represent the relationship 
between hyperedges and vertices. For example, the ith row and 
jth column of H represent, whether the jth hyperedge represents 
the ith vertex. H is defined as the following representation:

1,  
( , ) 0,  
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Further, we can get the degree matrix of each edge v.
d v w e ee E( ) = ∑ ( ) ( )∈ δ  (4)

δ e H v ev V( ) = ∑ ( )∈ ,  (5)

Furthermore, we use Dv and De to represent the diagonal 
matrices of vertices and hyperedges, respectively. To simplify 
the representation in the formulation, in the following, we 
define the hypergraph Laplace using simple Laplace [11].

L Ih = −Θ  (6)

Among them, Lh represents the hypergraph Laplacian 

matrix, Θ=
− − −
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T
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HB-MCJNMF

In this section, to explore the association pattern between 
abdominal plain film image data and clinical examination data, 

FIGURE 1. The overall flow chart of the construction of the diagnostic model in this paper.
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and to mine significantly related expression modules, we intro-
duce the hypergraph constraint mentioned in Section 2.2 into 
the JSNMNMF algorithm, aiming at the same model high-or-
der associations between different features of state data.

Lh1 and Lh2 represent the hypergraph matrices of X1 and X2, 
respectively. Next, we use P(Hi) (i=1,2,3) to rewrite the hyper-
graph constraints as follows:

P H Tr H B HT
1 1 1 1( ) = ( )

P H Tr H B HT
2 2 2( ) = ( )2  (7)

B1 and B2 represent the Laplace matrices of X1 and X2, respec-
tively. So, we can determine that B1= Lh1 and B2= Lh2. In addition, 
we add clinical diagnostic information D (whether or not to per-
form surgery) to induce the algorithm to pick out the differential 
features of the two categories. Specifically, it is coded as 1 for the 
non-surgical label and 2 for the surgical label. Furthermore, we 
get the objective function of the HB-MCJNMF algorithm:
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Among them, A represents the adjacency matrix of the two 
kinds of data, and diag(D) represents the diagonal matrix of D. 
Suppose φij and ϕij

I are Lagrangian multipliers of Wij ≥ 0 and (HI)

ij ≥ 0, respectively, then the Lagrangian function is expressed as:
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The partial derivatives of L with respect to W and HI are 
obtained, respectively:
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Among them, Ei (i=1,2,3) is a matrix whose elements are 

all 1. According to the Karush-Kuhn-Tucker) condition, φij 
Wij = 0 and Φij

I (HI)ij = 0, we can get the equations for Wij and 
(HI)ij:
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Module member selection

Through the iterative update of the above algorithm, the 
feature matrix X1 of the abdominal plain film and the feature 
matrix X2 of the clinical data are transformed into the basis 
matrix W and the coefficient matrices H1 and H2. To find the 
weights corresponding to the salient features of each row of 
W, we use z-score to extract the coefficients of each row of HI. 
It is defined as follows:

Z
h u

ij
ij i

i

=
−( )
σ

 (12)

where hij represents the element in HI, ui represents the 
mean of feature in HI, and σi represents the standard devia-
tion. Next, to determine module membership, we set a thresh-
old T, and if the element’s z-score is greater than the set thresh-
old T, it is considered eligible for assignment to the module.

Parameter selection

It can be seen from equation (11) that for the HB-MCJNMF 
algorithm, W, H1, and H2 need to be initialized. The previous 
research [10] has confirmed that the initialization using the 
singular value decomposition strategy can make the algorithm 
perform better. Therefore, SVD initialization is still used in this 
paper.

The different choice of parameters will affect the objective 
function value of the JNMF algorithm. Therefore, we first fix 
the K value to 15 and adjust α, λi, βi, and γi (i=1,2) according to 
the finite set of (0.001, 0.01, 0.1). Considering the time cost, we 
make λ1=λ2, β1=β2. We show the reconstruction error obtained 
by sequentially substituting 243 sets of regularization parame-
ters into the algorithm in the Figure 2.

As shown in the Figure 2, since the objective function value 
does not converge under certain parameter combinations, we 
set the reconstruction error in this case to 0 in Figure 2. The 
reconstruction error was the smallest at 0.2936 under the 
61st parameter combination. We use the following parameter 
combinations: α=0.1, λi=0.001, βi=0.1, γ1=0.001, γ2=0.1.

After selecting the best parameter combination, we 
selected the number of coexpression modules K. Since the 
number of samples in this paper is 45, the upper limit of K is 
set to 45, and the lower limit is 2, as shown in the Figure 3.

We found that as the value of K increased, the reconstruc-
tion error decreased, so we took 45 coexpression modules. 
According to the selection of the above parameters and K 
value, we obtained the decomposition results W, H1, H2, and 45 
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coexpression modules of the original matrices X1 and X2. The 
Pearson correlation coefficient between X1 and WH1 was 0.9848, 
and the Pearson correlation coefficient between X2 and WH2 
was 0.9584.

Next, we show the function values of the different con-
straints in the proposed algorithm as a function of the num-
ber of iterations, as shown in the Figure 4. It can be seen from 
Figure 4 that both the relative error and the constraints added 
based on the JNMF algorithm tend to converge with the 
increase of the number of iterations, which explain the stabil-
ity of the proposed algorithm to a certain extent.

For the 45 coexpression modules, we calculated the Pearson 
correlation coefficients of the original matrices (X1m and X2m) 
and the reconstructed matrices (W1m H1m and W2m H2m) in each 
module, respectively, m=1,2,…,4,5 represents the module num-
ber. In addition, we also calculated the mean of the two Pearson 
correlation coefficients for each module, as shown in the Figure 5.

RESULTS

As shown in Figure 6, Module 6 has the highest average 
Pearson correlation coefficient, so we choose Module 6 for 
subsequent analysis. A  total of 18 significant radiomic fea-
ture and 14 potential clinical indications were obtained. We 
present the salient features and descriptions of the two types 
of data selected by Module 6 in Tables 1 and 2 below, respec-
tively. For the description of the radiomic features selected by 
the HB-MCJNMF algorithm in Table 1, please refer to https://
pyradiomics.readthedocs.io/en/latest/.

In addition, we plotted a heat map of selected radiomics 
and clinical features to demonstrate the correlation between 
the two modalities of data, as shown in the Figure 6.

It shown in Figure 6 that most of the features have strong 
correlations, which indicates that the features selected by the 
algorithm are highly representative and can be effectively used 
as diagnostic features. At present, there is no correlation study 
on the data of these two modalities of NEC. The significant 
association features, we found, could not be further confirmed. 
To facilitate future reference for researchers, we list the top ten 
feature pairs with significant correlation in Figure  6 (top 10 
feature pairs after the absolute value of the Pearson correlation 
coefficient), as shown in Table  3. It is shown in Table  3 that 
ZV_GLSZM, LAE_GLSZM may be associated with multiple 
clinical features.

To further explore whether the features selected by the 
algorithm were diagnostic, we used random forest, SVM, 
and logistic regression to classify patients for surgery or not, 
respectively. We use grid search to find the optimal classifica-
tion parameters for each classifier before performing the classi-
fication task. During classification, the non-randomness of the 
experiment is guaranteed by setting a random seed, in which FIGURE 2. Reconstruction errors obtained under different 

parameter combinations.

FIGURE 4. The relative error of the algorithm and the change 
trend of the function value of each constraint with the increase 
of the number of iterations under the condition of optimal 
parameters.

FIGURE 3. Reconstruction errors obtained under different K 
values.
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75% of the total number of samples are used as the training set. 
About 25% of the data are used as the test set. Figure 7A-C show 
the test set ROC curves of the fusion feature selected by the 
algorithm, imaging data alone, and clinical data alone.

As shown in Figure  7, the area under the ROC curve of 
the fusion features selected by the algorithm using the ran-
dom forest classifier for classification reaches 0.8, which is 
much higher than the classification accuracy of the other two 
schemes. This confirms the feature selection ability of the algo-
rithm and the robustness of the algorithm.

DISCUSSION

In this section, we analyze the selected features from 
the perspective of clinical significance. From the results of 
radiomics feature selection, most of the features selected by 
the algorithm come from three texture features, including 

GLCM, GLRLM, and GLDM. The GLCM is used to describe 
the gray level relationship between a pixel and other pix-
els in an image. In medical imaging, this feature has been 
widely used in disease classification and diagnosis and has 
achieved good classification results [14]. Similar to GLCM, 
GLRLM [15], and GLDM [16] also play an important role in 
image classification.

FIGURE 5. The three subgraphs from the left to right represent the Pearson correlation coefficients of the original matrices X1m 
and W1m H1m in different modules, the Pearson correlation coefficients of the original matrices X2m and W2m H2m, and the mean of 
the coefficients.

TABLE 1. Radiomics’ salient features and their descriptions 
in Module 6

Type Name
First order Entropy

Skewness
First shape M2DDC

M2DDR
M2DD
M3DD

GLCM Contrast
Correlation
DA
DE
Idmn
Imc2
IV
JE
MCC
SE

GLRLM RLNUN
RP
SRE
SRLGLE
LAE
ZE
ZP
ZV

GLDM DE
DNUN
SDE

NGTDM Contrast

FIGURE 6. Heat map of the correlation between radiomics’ 
features and clinical features.
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In this section, we analyze the selected features from clini-
cal significance. From the results of radionics feature selection, 
most of the elements chosen by the algorithm come from three 
texture features, including GLCM, GLRLM, and GLDM. The 
gray level cooccurrence matrix (GLCM) describes the gray 
level relationship between a pixel and other pixels in an image. 
This feature has been widely used in disease classification and 
diagnosis in medical imaging and has achieved good classifi-
cation results [14]. Like GLCM, GLRLM [15], and GLDM [16] 
also play an important role in image classification.

Activation of calcium/calmodulin-dependent protein 
kinase IV (CaMKIV) has been shown to increase Dextran 
Sulfate Sodium-induced intestinal injury and inhibit epithe-
lial cell proliferation in mice with colitis. One experiment [17] 

demonstrated that the expression and activation of CaMKIV 
were upregulated in NEC mice, suggesting a potential contrib-
uting factor in the pathogenesis of NEC. Endotoxemia (ETX) 
is the most severe in newborns with NEC. Studies have found 
that ETX is negatively correlated with absolute neutrophil 
count [18], which suggests that absolute neutrophil count is 
a potential clinical indicator of NEC. The literature [19] con-
firmed the correlation between NEC mortality in newborns 
and Hematocrit and Absolute Value of Lymphocytes.

In a retrospective cohort study, among infants most prone 
to NEC, temporarily maintaining higher baseline hemoglobin 
may have a protective effect [20], suggesting that the mean 
of Hemoglobin may have some value in the early diagnosis 
of NEC. To develop a preclinical model of NEC-associated 
thrombocytopenia, the researchers measured serial platelet 
counts in mouse pups with trinitrobenzene sulfonic acid-in-
duced NEC-like lesions results showed immature platelet 
counts containing the breadth of platelet distribution. Platelet 
fraction is associated with NEC-like injury in mice [21]. One 
study used Cox regression models to investigate factors asso-
ciated with NEC and mortality, and they found a significant 
relationship between blood counts and increased mortality in 
NEC [22], recording clinical features and absolute monocyte 
counts, using ROC tested, the diagnostic accuracy of AMC 
values [23] suggests that lower (85-89%) oxygen saturation tar-
get levels increase NEC risk compared with higher (91-95%) 
oxygen saturation target levels.

TABLE 2. Clinically significant features and their descriptions in Module 6

Type Name Description
Biochemical Five Categories Calcium Calcium is the most abundant cation in the human body.
Blood Routine Absolute Neutrophil Count Neutrophils are the primary phagocytic cells in the blood and play an essential role in 

acute infections.
Hematocrit It refers to the centrifugation of anticoagulated blood under certain conditions, and the 

percentage of the volume of red blood cells in whole blood is measured.
Absolute Value of Lymphocytes Lymphocyte count refers to counting the different types of white blood cells separately 

and calculating the percentage.
Mean Hemoglobin It is the main component of red blood cells and can reflect the degree of anemia.
Platelet Volume Changes in platelet volume are related to platelet count.
Platelet Distribution Width Platelet volume distribution width is a parameter that reflects the variation of platelet 

volume in blood and is expressed by the coefficient of variation of the measured platelet 
volume.

Red Blood Cell Count By examining the number and changes of red blood cells, it has important clinical 
significance for identifying and diagnosing certain diseases.

Absolute Basophil Basophils are a type of white blood cell, and their increased numbers are more common 
in certain allergic diseases, certain blood diseases, certain malignant tumors, and certain 
infectious diseases.

Monocyte Absolute Value Mononucleosis is seen in infectious or parasitic diseases, active tuberculosis, monocytic 
leukemia, malaria, etc.

Blood Gas Actual Base Excess The amount of acid or base required to titrate the pH of 1 L of whole blood to 7.40 under 
actual arterial blood carbon dioxide partial pressure and oxygen saturation conditions.

Partial Pressure of Oxygen The partial pressure of oxygen in the blood is the tension created by the oxygen physically 
dissolved in the blood.

Standard Bicarbonate Refers to the plasma HCO3-concentration measured under the conditions of actual 
PaCO2, body temperature, and blood oxygen saturation under the condition of isolated air, 
which is affected by both respiration and metabolism.

Oxygen Saturation Refers to the ratio of oxygen-saturated hemoglobin in blood to total hemoglobin 
(unsaturated+saturated)

TABLE 3. Clinically significant features and their descriptions 
in Module 6

Radiomics a features - Clinical features Pearson correlation 
coefficient

ZV_GLSZM – Absolute Neutrophil Count 0.4420
LAE_GLSZM – Absolute Neutrophil Count 0.4371
ZV_GLSZM – Platelet Distribution Width 0.4309
LAE_GLSZM – Platelet Distribution Width 0.4231
ZV_GLSZM – Mean Hemoglobin 0.3387
ZV_GLSZM – Thrombocytosis 0.3369
Entropy_first_order – Standard Bicarbonate 0.3342
LAE_GLSZM – Mean Hemoglobin 0.3323
SE_GLCM – Standard Bicarbonate 0.3304
LAE_GLSZM – Thrombocytosis 0.3303
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To further confirm the clinical significance of the selected 
clinical features, we compared the 14 clinical features with 
symptoms in seven clinical metrics of metabolic derangement 
(MD7) associated with the three types of tests (biochemical 
five, blood routine, and blood gas) selected in this paper. We 
found that the four metrics related to these three examinations 
in MD7 were acidosis, hyponatremia, thrombocytopenia, and 
neutropenia. By consulting the diagnostic basis of these four 
metrics, we found that most of the selected 14 characteristics 
were closely related to the diagnosis of the four metrics.

The data of the two different modalities used in this paper 
will introduce some noise during the processing. HB-MCJNMF 
algorithm proposed in this paper can effectively improve the 
anti-noise performance of the algorithm. To test this idea, 
we use the original JNMF algorithm and the HB-MCJNMF 
algorithm to compare the algorithm performance on the real 
patient dataset and the synthetic dataset, respectively.

In real data, we set the number of iterations for both algo-
rithms to be 100 and then compare the reconstruction errors 
and the common l1 norm of the two algorithms. As shown in 
Table 4, the HB-MCJNMF algorithm obtains a smaller recon-
struction error and l1 norm, which, to some extent, confirms 
the performance advantage of the algorithm.

In synthetic data, we compare the anti-noise performance 
of the two algorithms. Specifically, we generate a dataset and 
set the total number of samples to 100, and the number of fea-
tures for both modal data is 100. Furthermore, we set K=45. 
The following equations generate the basis matrix and the 
coefficient matrix HI (I=1,2,3).

α β β α ηn l i ni i i[ ]= = + =( ){ }1 2, , ,  (13)

α is a matrix of random integers (1-10) obeying the uniform 
distribution U(1,10). ηi and l represent Gaussian noise and its 
level, respectively. We present the reconstruction error and l1 
norm of the two algorithms in Table 5. As shown in Table 5, 
the reconstruction errors of the proposed HB-MCJNMF algo-
rithms are lower than those of JNMF as the noise increases. 
This confirms that the HB-MCJNMF algorithm has better 
anti-noise performance than JNMF and can effectively cor-
relate radiomics and clinical data with certain noise.

CONCLUSION

Based on the complementarity between data features of 
different modalities, this paper extracts radionics features and 

TABLE 4. Comparison of algorithm performance between 
JNMF and HC-MCJNMF in real data

Reconstruction error l1 norm
JNMF 0.3109 20.5657
HC-MCJNMF 0.3113 19.1164

TABLE 5. Comparison of algorithm performance between 
JNMF and HC-MCJNMF in synthetic data

Noise Level JNMF HC-MCJNMF
1 0.82144 0.82134
2 0.83890 0.83870
3 0.84302 0.84282
4 0.84515 0.84496
5 0.84956 0.84937

FIGURE 7. (A) ROC curves for classification using algorithmically selected fused features; (B) ROC curves for classification using 
radiomic features alone; and (C) ROC curves for classification using clinical features alone.

C
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clinical features from plain abdominal films and clinical exam-
inations of NEC patients for feature fusion and then constructs 
a diagnostic model. Among them, we propose an HB-JNMF 
algorithm for robust feature selection during feature fusion. 
We use three commonly used classifiers for diagnostic model 
construction in the classification part. Among them, the area 
under the ROC curve for classification using random forest 
reaches 0.8. The diagnostic model can assist physicians in 
making decisions about the need for surgery in patients with 
NEC. In addition, most of the clinical features found by the 
algorithm have also been confirmed by the previous studies. 
Physicians can refer to these significant clinical indicators 
when conducting NEC-related clinical examinations.

In the future, we will try to fuse features from more 
modalities, such as genomics data of NEC patients, to fuse 
more types of features to build a more comprehensive diag-
nostic model for NEC. In addition, collecting as many sam-
ples as possible is also beneficial for comprehensive feature 
fusion.
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