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ABSTRACT 

Immunogenic cell death (ICD) reshapes the tumor immune microenvironment and 

activates the adaptive immune response. However, the clinical significance of ICD-

associated genes in colorectal cancer (CRC) remains unclear. In this study, we used 

weighted gene co-expression network analysis (WGCNA) to identify ICD-related gene 

modules. An ICD-related risk score (ICDRS) was then constructed using Cox 

regression modeling and LASSO analysis. Immune cell infiltration in patients with 

different risk levels was assessed using the ESTIMATE and ssGSEA algorithms. The 

OncoPredict package was employed to explore the association between the ICDRS and 

chemotherapy drug sensitivity. Finally, the expression levels of ICD-related genes were 

validated through in vitro cellular experiments. Three CRC prognostic genes—CLMP, 

NRP1, and PLEKHO1—were identified from a set of 34 ICD-associated genes based 

on WGCNA and LASSO analyses. These genes were used to construct the ICDRS 

model. Notably, a high ICDRS was found to be an independent predictor of poorer 

overall survival (OS) in CRC patients. High-risk patients also exhibited increased 

immune cell infiltration. Moreover, the ICDRS was significantly correlated with 

sensitivity to conventional chemotherapeutic drugs, suggesting its potential utility in 

guiding personalized chemotherapy. Cellular assays confirmed that CLMP, NRP1, and 

PLEKHO1 were differentially expressed between normal and cancerous cells, and that 

NRP1 specifically promoted the proliferation, migration, and invasion of CRC cells. In 

conclusion, the ICDRS may serve as a reliable predictor of CRC prognosis and offers 

a promising direction for the clinical management of CRC patients. 

Keywords: Colorectal cancer; CRC; drug resistance; prognostic signature; 

immunogenic cell death; ICD; tumor immune microenvironment, TIME; cancer 

 

INTRODUCTION 

Colorectal cancer (CRC) ranks the third most frequently diagnosed type of cancer 

worldwide. The annual incidence of CRC reached 1.9 million cases, which represents 

roughly 10% of all newly diagnosed cancers all over the world. At present, there is a 
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rapid increase in the incidence of CRC among younger populations in both developed 

and developing regions [1, 2]. The evolution of CRC is an intricate process that 

encompasses several stages and the involvement of genes. CRC cells exhibit distinct 

biological behaviors, characterized by robust proliferation, susceptibility to relapse, and 

metastasis [3, 4]. Currently, the survival of CRC remains dismal [5-7], which requires 

the identification of novel prognostic, therapeutic, and diagnostic biomarkers for the 

cancer.  

Immunogenic cell death (ICD) is a type of cell death [8, 9] in which the interaction 

between immune cells and dying cells could be considered as an effective 

communication between the immune system and dying cells [10]. The process of ICD 

involves apoptosis, during which damage associated molecular patterns (DAMPs) will 

be released from tumor cells. These DAMPs will be detected by NOD-like receptors 

(NLRs) and innate immune receptors like Toll-like receptors (TLRs) to stimulate 

immune reactions to specifically target the tumor. This will promote and also prolong 

the effectiveness of chemotherapy drugs through a dual mechanism of directly killing 

cancer cells and enhancing antitumor immune responses [11, 12]. Previous study 

developed and verified an ICD risk signature for lower-grade glioma using 12 ICD-

associated genes by analyzing the expressions, functions, and genetic alterations of 34 

ICD-associated genes [13]. Two ICD-associated subtypes were classified applying 

consensus clustering and an ICD-associated prognostic model was established to help 

predict the survival for patients suffering from head and neck squamous cell carcinoma 

[14]. In addition, single-cell analysis showed that in ascending thoracic aortic 

aneurysms, the target cells of the ICD were endothelial cells, in which the aortic 

endothelial cell receptor ACKR1 promoted the infiltration of T-cells and myeloid cells 

through CCL5 and CXCL8 ligands, respectively [15]. Hence, mining effective ICD-

related biomarkers might improve the clinical outcomes for patients with CRC. 

The role of immune system in cancer initiation, progression, and therapy has been 

extensively explored. Recent therapeutic studies highlighted the crucial interplay 

between dying or dead cancer cells and immune cells in determining cancer treatment 

efficacy [16]. ICD triggers both adaptive and innate immunological responses, helping 
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to form a long-lasting immunological memory [17-19]. Similarly, cancer therapies 

work to stimulate anticancer immune responses and form long-term anticancer 

immunity by inducing ICDs [20]. 

The aim of this study was to construct a risk scoring model based on ICD-related genes 

in order to evaluate its potential application in prognosis prediction, tumor immune 

microenvironment characterization, and personalized treatment guidance for CRC 

patients. This study established an ICD-related risk score (ICDRS) for patients with 

CRC based on genes correlated with ICD using weighted gene co-expression analysis 

(WGCNA) and validated the prognostic value and independent predictive performance 

of the ICDRS. Additionally, ICDRS-associated somatic mutation status and copy 

number alteration (CNA) were analyzed by molecular characterization. Furthermore, 

functional pathway alterations and immune infiltration were assessed. In conclusion, 

the ICDRS model we constructed can serve as a potential independent prognostic 

indicator for CRC patients and provide new biomarkers and potential therapeutic targets 

for precision immunotherapy and personalized chemotherapy regimens. 

MATERIALS AND METHODS 

Data acquisition and preprocessing  

Bulk-sequencing data in the form of FPKM were log2-transformed. Survival data of 

367 primary cancer (CRC) and 51 normal samples in The Cancer Genome Atlas 

Program (TCGA, https://cancergenome.nih.gov) were processed using the R package 

‘TCGAbiolinks’ [21] as the training cohort (TCGA-COADREAD). The TCGA 

database was accessed to obtain MAF files of somatic mutation data based on whole-

exome sequencing and CNA data. From the Gene Expression Omnibus (GEO; 

accession number: GSE17537; https://www.ncbi.nlm.nih.gov/geo/), the clinical data of 

50 CRC patients and their gene expressions were collected for validation. Information 

on patients’ clinical characteristics from the TCGA-COADREAD and GSE17537 

datasets used is shown in Supplementary Table 1. The median expression value of genes 

with numerous probes was taken as the expression of the gene.  

https://www.ncbi.nlm.nih.gov/geo/
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WGCNA analysis and key ICD-associated genes 

ICD-related genes from a past study [22] were utilized to calculate ICD enrichment 

scores for each sample using the ‘GSVA’ package [23]. Co-expression network analysis 

was performed with the R package ‘WGCNA’ [24] under the soft thresholding at 3, 

which achieved a fit index of 0.85 to ensure a scale-free topology. Those with the 

highest enrichment score in ICD and the top 50% median absolute deviation in the 

expression profile were included in co-expression network analysis. Modules 

containing at least 30 genes were identified through hierarchical clustering. ICD-related 

modules were sectioned according to the correlation with the clinical data, and the pink 

and turquoise modules were selected. Furthermore, genes with high module 

membership (MM) and significance (GS) were considered as hub genes in each module 

(cor. gene GS > 0.6 and MM > 0.8). 

Construction and evaluation of the ICDRS 

Based on the expression value of the selected ICD-related modules, prognostic markers 

were identified using univariate Cox proportional hazard regressions (P-values < 0.05). 

Next, the ICDRS was developed with LASSO-penalized Cox regression. The LASSO 

penalty parameter λ was refined to determine the coefficient for each gene, and the 

ICDRS was formulated as follow: 

Score =∑βi ∗ χi

𝑛

𝑖=0

 

where xi represented the expression of a gene and βi represented the gene's coefficient 

from the LASSO-penalized Cox regression model. Low-risk and high-risk patients 

were grouped by the median ICDRS value. 

The correlation between clinical features and the ICDRS 

Univariate Cox analysis was used to examine the correlation between clinical factors 

including gender, age, TNM stage, lymphatic invasion, risk scores, and patient survival 
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[25]. The independent prognostic value of the ICDRS was assessed by multivariate Cox 

proportional hazard regression. The clinical characteristics of the two risk groups were 

compared by the Wilcoxon rank-sum test. 

Analyses of functional and pathway enrichment  

Using the R package "clusterProfiler" [26, 27], Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. 

FDR-adjusted p-value < 0.05 was considered as statistically significant. To identify 

highly enriched gene sets (nominal p-values < 0.05 and FDR p-values < 0.05), 50 

hallmark gene sets from the MSigDB were employed to perform gene set variation 

analysis (GSVA). 

Estimating immune cell infiltration  

Immune infiltration in each sample was measured utilizing the ssGSEA algorithm based 

on the expression level of markers specific to immune cells [28]. This approach was 

selected because ssGSEA does not rely on a reference dataset, making it suitable for 

RNA-seq data and enabling a comprehensive assessment of immune cell infiltration at 

the individual sample level. The resulting immune infiltration scores were further 

analyzed to explore their correlation with the ICDRS and their potential role in the 

tumor immune microenvironment of CRC. In addition, tumor purity, intratumoral, 

stromal and immune cell abundance of the tumor microenvironment were calculated by 

ESTIMATE based on gene expression profiles of the CRC tissues [29]. 

Genetic variation analysis 

Genetic variation analysis was performed based on single nucleotide polymorphisms 

(SNPs) and copy number variations (CNVs) from the TCGA database. The mutation 

types and gene frequency were displayed applying the R21 "maftools" package [30]. 

CNA summary plots were visualized with the 'ggplot2' package in R to present 

chromosomal alterations. Circos plots were also plotted to show the distribution of ICD-
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correlated genes utilizing the R package “RCircos” [31]. 

Drug sensitivity 

The GDSC v2 (http://www.cancerrxgene.org) database stores cell line expression and 

drug response information and facilitates the correlation analysis between different 

drug responses and risk scores. The R package “OncoPredict” is a drug response 

prediction tool [32, 33]. The IC50 value refers to the concentration of a drug generally 

required to achieve its inhibitory effect, with a lower value indicating a higher cell 

sensitivity to the drug. The relationship between chemotherapy sensitivity and the risk 

score was examined by Spearman correlation analysis. 

Cell culture and cell transfection 

DMEM medium containing 1% antibiotic/antifungal solution and 10% fetal bovine 

serum (FBS) was used to culture the Caco2 (CRC cell line) and NCM460 (normal 

colonic mucosal epithelial cell line) purchased from the American Type Culture 

Collection (ATCC) at 37°C with 5% CO2. Following the manufacturer's guidelines, 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) was utilized for cell transfection. 

Briefly, Caco2 cells were seeded at a density of 2 × 105 cells per well in a 6-well plate 

and transfected with siRNA at a final concentration of 50 nM using 5 μL of 

Lipofectamine 2000 per well. To downregulate the NRP1 gene, Caco2 cells were 

transfected with specific siRNA (si-NRP1#1: 5’-CAGCCTTGAATGCACTTATAT-3’ 

and si-NRP1#2: 5’-CAGAAGAATGGTACAAATCCAAG-3’, Sigma-Aldrich, St. 

Louis, MO, USA), while the controls were transfected with the corresponding non-

specific control siRNA (si-NC, Sigma-Aldrich, St. Louis, MO, USA). After the 

transfection, the cells were cultured in an incubator for 48 hours (h) for subsequent 

experimental analysis. 

Quantitative reverse transcriptase PCR (qRT-PCR) 

Following the manufacturer's guidelines, TRIzol reagent (Invitrogen, Carlsbad, CA, 
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USA) was employed to separate total RNA, which was reverse-transcribed into cDNA 

using the PrimeScript RT kit (Takara Bio, Shiga, Japan). To quantify the expression 

levels of the CLMP, PLEKHO and NRP1 genes, qRT-PCR analysis was performed with 

the use of SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) 

on an ABI 7500 real-time PCR system (Applied Biosystems, Foster City, CA, USA), 

strictly following the instructions. The primer sequences were listed as follows: CLMP 

Forward Sequence 5’-3’: TCCTACTATGTTGGAACCTTGGG and Reverse Sequence 

5’-3’: CGGTGAGCAGCCATTCAATATC; PLEKHO1 Forward Sequence 5’-3’: 

GGGACCAGCTCTACATCTCTG and Reverse Sequence 5’-3’: 

TGGAGTGGGCAAGAGTAAACT; NRP1 Forward Sequence 5’-3’: 

GGCGCTTTTCGCAACGATAAA and Reverse Sequence 5’-3’: 

TCGCATTTTTCACTTGGGTGAT. GAPDH Forward Sequence 5’-3’: 

GTCTCCTCTGACTTCAACAGCG and Reverse Sequence 5’-3’: 

ACCACCCTGTTGCTGTAGCCAA. 

CCK-8 assay 

Caco2 cells at the logarithmic growth phase were plated into a 96-well plate with a 

density of 1 × 104 cells per well and incubated at 37°C with 5% CO2 for durations of 0, 

24, 48, or 72 hours. Subsequently, 10 μL of CCK-8 solution was introduced to the 

medium, and the samples were incubated at 37°C for 2 hours. To create the CCK-8 

curve, absorbance readings at 450 nm were used on the Y-axis, while time was 

represented on the X-axis. 

Wound healing test 

A total of 4 × 105 Caco2 cells/well were suspended in 10 ml of medium and seeded into 

a 10-cm dish. When the cells reached 95% confluency, wounds on the cell layer were 

created using the tip of a 100 μl pipette (each wound had the same width). Subsequently, 

the scratches were washed with PBS solution, followed by incubating the samples in 

complete medium with 1% FBS at 37°C in 5% CO2. The width of the scratches was 
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examined under an inverted microscope at both 0 and 48 h after the creation of the 

wounds. Images were analyzed using ImageJ v1.51n software. 

Transwell assay 

Cell invasion experiment was conducted using Matrigel (BD Biosciences, San Jose, 

CA, USA) to pre-coat the upper chambers (8.0 μm pore size, Corning Inc., Corning, 

NY, USA) of transwell. The transfected Caco2 cells (si-NRP1 and si-NC) were 

suspended in FBS-free DMEM and added to the upper chamber, while DMEM 

containing 20% FBS was added to the lower chamber as a chemoattractant. After 

incubation for 24-h, non-invading cells were removed from the upper chamber, and the 

cells invading into the lower chamber were fixed by 4% formaldehyde and dyed by 0.1% 

crystal violet. Cells penetrated the membrane were counted under a microscope 

(Olympus Corporation, Tokyo, Japan). 

Statistical analysis 

All the statistical studies were performed in the R language (https://www.R-project.org) 

or GraphPad Prism 8.0.2 (GraphPad., Inc., La Jolla, CA, USA). Prior to hypothesis 

testing, the normality of data distribution was assessed using the Shapiro-Wilk test. For 

normally distributed data, results were presented as mean ± standard deviation (SD), 

while for non-normally distributed data, results were expressed as median with 

interquartile range. Continuous variables between groups were compared using the 

Wilcoxon rank-sum test for non-normally distributed data and the Student’s t-test for 

normally distributed data. The log-rank test is used to determine statistically significant 

differences in survival durations between groups under investigation. Independent 

prognostic factors associated with survival were identified by employing univariate and 

multivariate Cox proportional hazard regression analysis. ICD-related gene 

associations were assessed by Spearman correlation analysis. Unpaired t-test, one-way 

analysis of variance and two-way analysis of variance were applied during the statistical 

analyses of the experimental data. Statistical significance was set at p-values < 0.05. ns: 

https://www.r-project.org/
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not significant (p-values > 0.05); ∗ p-values < 0.05; ∗∗ p-values < 0.01; ∗∗∗ p-

values < 0.001; ∗∗∗∗ p-values <0.0001. 

RESULTS 

ICD-related gene changes in CRC 

A total of 34 genes involved in the ICD process were selected for further study based 

on a recent study [22]. Differential expression analysis showed that 82% (28/34) of 

these genes were significantly different in tumor tissue compared to normal samples in 

the TCGA-CRC cohort (Figure 1A), such as CD8A, CD8B, CASP8, CASP1, CALR, 

HSP90AA1, IFNG, IFNGR1, PRF1, PIK3CA and TNF. CRC patients were divided by 

TNM stage, lymphatic invasion, age, gender, and presence of perineural invasion. 

Comparison on the gene expressions showed that the levels of CD8A, CASP1, IFNG, 

and IL17A expressions were significantly downregulated in patients with stage III/IV 

than in stage I/II patients, suggesting an attenuated immune response in advanced 

tumors (Figure 1B). Additionally, we observed significant differences in the expression 

of CASP1, ATG5, EIF2AK3, ENTPD, and IL17A in lymphatic invasion patients and 

non-lymphatic invasion patients (Supplementary Figure 1A). Moreover, the 

expressions of ENTPD1, IL1R1, LY96, MYD88, and NLRP3 in the perineural invasion 

presence group were significantly upregulated compared to those without perineural 

invasion (Supplementary Figure 1B). However, only a few genes were associated with 

age and gender in CRC (Supplementary Figure 1C, D). This was critical for 

understanding the immunomodulation of CRC and developing its specific therapeutic 

modalities. 

The genome variation landscape of ICD-correlated genes was also examined. Overall, 

the ICD-correlated genes largely showed a low mutation frequency, except for PIK3CA, 

which primarily had missense mutations in 23% of the CRC samples (Figure 1C). This 

suggests that PIK3CA may influence immune escape and treatment response in CRC. 

Additionally, copy number amplification of IL6 may enhance the expression of pro-

inflammatory factors, which in turn affects tumor progression and immunotherapeutic 
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response (Figure 1D). The pattern of variation in these genes suggests that ICD-related 

genes may play a critical role in cancer immunomodulation and may serve as potential 

biomarkers for predicting immunotherapeutic response. 

Screening ICD-related gene modules based on WGCNA 

WGCNA was conducted to section ICD-related key gene clusters. After the removal of 

outlier data, soft threshold (β = 3, scale-free R2 = 0.850) was used to ensure that the 

network was scale-free (Figure 2A) (Supplementary Figure 2A). Next, the correlations 

between the eigengenes of modules and the corresponding ICD score were calculated 

for CRC samples applying ssGSEA (Figure 2B, C). The pink and turquoise modules 

that exhibited higher correlations than other modules were selected for further analysis. 

Under the thresholds of cor. cor. GS > 0.6 and MM > 0.8, a total of 183 vital genes 

linked to ICD were screened (Figure 2D, E). Using Metascape, we performed protein-

protein interactions (PPI) network analysis to further confirm the interactions among 

these genes (Supplementary Figure 2B). Function enrichment analysis of the biological 

processes of GO terms showed predominant enrichment in T cell activation, immune 

response-regulating signaling, immune response activation, and leukocyte proliferation 

(Supplementary Figure 2C), which was consistent with enriched cellular component 

and molecular function terms of the GO terms (Supplementary Figure 2D, E). KEGG 

pathway enrichment results also demonstrated that these genes were enriched to the 

immune-correlated functional pathways such as chemokine signaling and leukocyte 

transendothelial migration pathways (Supplementary Figure 2F).  

Development of the prognostic signature ICDRS for CRC 

To further screen key prognostic markers, we first identified seven key ICD-related 

genes, including C5AR1, VIM, PLEKHO1, CSGALNACT2, NRP1, CLMP, and GPNMB, 

using univariate cox regression analysis (Figure 3A). Next, we performed LASSO cox 

regression analysis on these genes to determine the optimal LASSO penalty parameter 

λ (Figure 3B, C) and substituted it into the ICDRS model. Ultimately, the three 



 

12 
 

prognostic genes, namely, CLMP, NRP1, and PLEKHO1, were used to build the ICDRS 

model (Figure 3D). According to the median gene expression levels of CLMP, NRP1, 

and PLEKHO1, high and low gene expression groups of the three genes were classified. 

As shown in Figure 3E-G, these genes were observed to be closely involved in the 

prognosis of CRC patients. 

Evaluation and validation of ICDRS  

In both the validation and training cohorts, the ICDRS scores were calculated and 

assessed. In comparison to those with low-risk scores (Figures 4A and B) (log-rank test, 

P-values < 0.05), the survival of patients with high-risk scores was more unfavorable. 

Additionally, neither group had any extreme or abnormal event in the distribution of 

risk score (Figure 4C, D). ICDRS was validated as an independent prediction indicator 

for the OS of CRC patients by univariate and multivariate Cox regression analyses 

(Figure 4E, F). These findings indicated that the ICDRS signature could be a novel 

prognostic indicator for patients with CRC. 

ICDRS revealed the molecular characteristics and pathway alterations in CRC 

To investigate the functional differences and molecular features of ICDRS, the ICDRS 

scores of patients were used to divide low-risk and high-risk groups. Compared with 

the low-risk patients, high-risk patients had higher mutation frequencies in COL27A1 

and PTEN (9% vs. 2% and 7% vs. 1%, respectively) than SNVs. In contrast, COL7A1 

mutation was more frequent in low-risk patients than those with a high risk (7% vs. 

1%). Notably, most of them were missense mutations (Figure 5A, B). In addition, we 

found significant gene amplifications and deletions in several chromosomal regions in 

the high-risk group, while the low-risk group had an overall lower CNV frequency than 

the high-risk group (mean value of 0.68 in low-risk group vs. mean value of 0.70 in 

high-risk group, Figure 5C-E, Supplementary Table 2). We further calculated the 

activity of 50 cancer hallmark signatures in the TCGA-CRC cohort to examine the 

differences in the functional processes between the two groups. Substantial variations 
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in multiple cancer characteristics were found between the two risk groups (Figure 5F). 

The high-risk group had upregulated HYPOXIA, TGF-β SIGNALLING, APOPTOSIS, 

NOTCH signaling, and INTERFERON GAMMA RESPONSE, while the low-risk 

group had upregulated MYC targets including PEROXISOME. Thus, ICDRS was 

proven to be accurate in characterizing patients with different biological processes. 

Immune infiltration profiles defined by ICDRS 

ICDRS stratification was positively correlated with immune infiltration as the high-risk 

group had higher ESTIMATE, stromal, and immune scores, which indicated greater 

immune infiltration and lower tumor purity (Figure 6A-D). Complete analysis on the 

immune cell subtype revealed a high infiltration level of immune-suppressive cells such 

as T follicular helper and regulatory T cells in the high-risk group (Figure 6E) [34, 35]. 

The tumor mutation burden (Figure 6F, R = 0.31, p = 7.4e−09), T cell receptor (TCR) 

diversity (Figure 6G, R = 0.5, p < 2.2e−16), and cytolytic activity (Figure 6H, R = 0.55, 

p < 2.2e−16) were also strongly linked with the ICDRS score. Furthermore, the ICDRS 

score was also higher in the MSI-high group (Figure 6I, Wilcoxon rank-sum test, p = 

5e−04). These findings demonstrated that immune suppression and anticancer 

immunity coexisted in the TME of CRC. 

ICDRS-guided chemotherapy strategies 

By stimulating ICD with specific chemotherapy agents, tumors can be more susceptible 

to checkpoint blockade therapies, but determining the optimal combination of 

chemotherapy and immunotherapy is the major difficulty [36, 37]. As the ICDRS was 

developed based on ICD-correlated genes, we speculated that ICDRS was potentially 

correlated with chemotherapy response. The 'oncoPredict' R software was employed to 

estimate the IC50 of pharmaceuticals. The Spearman correlation between log2-

transformed IC50 of each drug and ICDRS risk score was calculated. The ICDRS risk 

score was negatively related to the sensitivity of AZ960_1250, AZD1332_1464, 

AZD8055_1059, ribociclib_1632, WZ4003_1614, and XAV939_1268 (Figure 7A). 
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Interestingly, AZ960, a novel Jak2 inhibitor, was reported to be effective in inducing 

apoptosis in cancer cells [38]. Conversely, the sensitivity of BI-2536_1086, 

dihydrorotenone_1827, SB5051_1194, SCH772984_1564, ulixertinib_1908, and 

ulixertinib_2047 were positively associated with the ICDRS risk score (Figure 7B), 

indicating their potential to serve as candidate drugs for treating cancer patients with 

different ICDRS scores. However, additional research should be performed to examine 

the correlation between ICDRS and drug susceptibility. 

The expressions of characterized genes in CRC cells 

To further validate the prognostic signatures we identified, we first detected the 

differences in the expression levels of CLMP, PLEKHO, and NRP1 between CRC cells 

Caco2 and control cells (normal colonic mucosal cells NCM460) based on qRT-PCR 

and Western blotting. The mRNA expressions of PLEKHO and NRP1 were 

significantly elevated as compared to normal colonic mucosal cells NCM460, whereas 

the expression of CLMP was significantly downregulated in cancer cells (Figure 8A). 

Consistently, the protein levels of these genes showed similar results (Figure 8B). It has 

been shown that NRP1 is strongly associated with tumor progression and metastasis, 

and there is also a significant association with poorer patient survival in CRC [39]. For 

this reason, we selected the NRP1 gene to verify the effect of its knockdown on the 

proliferation, migration and invasion levels of CRC cells (Figure 8C). The results of 

CCK-8 assay showed that knockdown of NRP1 expression significantly reduced the 

proliferation level of CRC cells (Figure 8D). The migration and invasion of CRC cells 

were also remarkably inhibited after silencing NRP1 expression (Figure 8E-F). These 

results revealed that prognostic markers screened on the basis of ICD-related genes had 

a potential impact on the occurrence and progression of CRC. 

DISCUSSION 

Advancements in treatment have been made; however, CRC remains a deadly disease 

with significant heterogeneity. This variability necessitates the optimization of 
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therapies to enhance survival rates and decrease mortality. Therefore, it is crucial to 

identify dependable prognostic biomarkers that can stratify survival risk and forecast 

therapeutic strategies tailored to specific subtypes. Li et al. used a multistep approach 

to construct a signature map based on immune-related genes using the TCGA and GEO 

databases, and found that CRC patients with low immune risk scores achieved better 

treatment outcomes with immunotherapy [40]. Zhao et al. delved into the molecular 

characterization of PANoptosis in CRC prognosis and constructed a prediction model 

based on four PANoptosis-related genes, namely TIMP1, CDKN2A, CAMK2B and 

TLR3 [41]. ICDRS demonstrates a unique advantage over existing prognostic indicators 

in the prognostic assessment of CRC patients. As a novel type of regulated cell death, 

ICD has been shown to promote adaptive immunity and boost anti-tumor immune 

responses, suggesting that the identification of ICD-related biomarkers could help 

distinguish CRC patients who might benefit from immunotherapy [42]. Here, ICDRS 

is based on the expression of ICD-related genes that reflect complex changes in TME, 

which can more effectively identify high-risk patients who may require more aggressive 

treatment or immunotherapy, with greater predictive power and individualized 

treatment guidance value. 

In this study, we first assessed the expression differences of ICD-correlated genes in 

both CRC and para-cancerous normal tissue samples based on public databases and 

analyzed the variants of ICD-related genes in the TCGA-CRC cohort. The intracellular 

mediator phosphatidylinositol-3-kinase (PI3K) (also known as gene symbol PIK3CA) 

functions crucially in the promoting cell transformation and proliferation, tumor 

initiation, and resistance to apoptosis. Stimulation of the activity of e occurs in the 

presence of external growth factors and hormones [43]. PI3K dysregulation triggers the 

activation of AKT, a serine/threonine kinase, in various types of cancers, ultimately 

influencing a variety of downstream proteins that stimulate unchecked cellular and 

tumor proliferation [44]. Approximately 15-20% of CRC is characterized by the 

presence of activating mutations in PIK3CA, which affects both the OS and 

progression-free survival of patients suffering from CRC [45]. In addition, PIK3CA 

mutations have different immune profiles in gastric cancer and can modulate tumor 
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immunogenicity [46]. Notably, we detected a high mutation frequency of PIK3CA in 

CRC samples based on the mutation profile of ICD-associated genes, indicating that 

PIK3CA mutations affected CRC growth and progression via DAMPs by altering the 

immune response of tumor to the immune system. 

The ICDRS was developed for CRC by integrating univariate LASSO Cox regression 

analysis, Cox analysis, and WGCNA. The ICDRS showed a strong predictive 

significance in independently predicting the survival of CRC patients. The accuracy of 

the signature was validated using internal and multiple external validation datasets. 

Notably, many of the genes analyzed in our study have been previously linked to CRC. 

For instance, C5AR1 is a master regulator in tumorigenesis of CRC through immune 

modulation [47]. After co-cultivation with the bacteria from CRC, the expression of 

VIM changes in Caco2 cells [48]. The prognostic significance and mechanism of 

PLEKHO1 in the immune microenvironment of colon cancer have also been reported 

[49]. PLEKHO1 contributes to the development of renal cell carcinoma, and its 

knockdown significantly can inhibit cancer cell viability and promote apoptosis [50]. 

CLMP is capable of regulating colon epithelial cell proliferation and preventing tumor 

growth [51]. CLMP has an anti-CRC effect and it can affect the resistance of CRC cells 

to all-trans retinoic acid [52]. Neuropilin-1 (NRP1), an important immunomodulatory 

receptor, has been found to be closely associated with the progression of CRC. The role 

of NRP1 in TME is complex and involves both immunosuppression and is closely 

linked to angiogenesis [53]. NRP1 inhibits anti-tumor immune responses by enhancing 

infiltration of regulatory T cells and promoting immune escape. [54]. In addition, NRP1 

activates the angiogenic pathway by interacting with vascular endothelial growth factor 

receptor 2 (VEGFR2), promoting nutrient supply to tumors, which in turn drives tumor 

growth and metastasis [55]. The current work was the first to demonstrate the effect of 

NRP1 on CRC cell proliferation, migration and invasion based on ICD-related genes.  

Thus, NRP1 is not only an important mediator of tumor immunomodulation, but also 

plays a key role in tumor angiogenesis. By targeting NRP1, it may help to restore the 

immune response and inhibit angiogenesis, providing a new strategy for 

immunotherapy and antitumor therapy. 
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CRC is often associated with chronic inflammation [56]. Inflammation in the 

gastrointestinal tract triggers cancer-causing genetic changes and initiates the 

development of CRC. Furthermore, immune cells such as myeloid and lymphoid cells 

infiltrate the existing tumors and drive "inflammation provoked by tumors", leading to 

cancer growth by promoting the survival and growth of cancerous cells [57, 58]. Here, 

we identified two ICDRS subtypes with distinct TME landscapes. Increased infiltration 

of different immune cells was found to be related to a higher ICDRS, indicating the 

coexistence of pro- and anti-tumor components in the TME. The presence of activated 

CD4+ T cells and active CD8+ T cells in CRC patients is closely associated with 

antitumor immunity [59, 60]. Follicular T helper cells are also related to the survival of 

patients with CRC [61]. Moreover, Th17-type cytokines activate STAT3 and NF-kB 

pathway to promote CRC tumorigenesis [62]. Due to the coexistence of immunological 

activation and immune suppression, immune-related characteristics enriched in the 

group with a high ICDRS score were identified by GSVA. In comparison to patients 

with low ICDRS scores, those with high ICDRS scores will benefit more from 

checkpoint inhibitors as they showed higher levels of these immune checkpoints. 

Limitations 

Apart from these promising findings, the present work also had some limitations. The 

study of the relationship between ICDRS and the therapeutic sensitivity of anti-PD-L1 

was hindered by a lack of data from CRC patients with ICB treatment. To better 

elucidate the molecular mechanisms underlying CRC immunobiology, further studies 

are encouraged to validate the prognostic value of ICRDS in larger datasets with multi-

omics analysis. Additionally, transcriptomic analysis might also benefit from 

integrating proteomics and metabolomics. In particular, the mechanism of action of the 

screened prognostic genes in CRC should be further validated by performing 

experiments such as mouse xenograft models or knockout models.  

CONCLUSION 
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This study established and validated a robust ICD-correlated prognostic signature that 

can accurately predict the survival outcomes and reveal distinct immune statutes and 

molecular features between the two risk groups of CRC. Further exploration and 

validation are needed to probe into the therapeutic implications of the current signature 

in CRC. 
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FIGURES WITH LEGENDS 

 

 

 

Figure 1. Genetic landscape of ICD-related genes 

(A) Genes related to ICD between tumor and normal samples were subjected to 
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differential expression analysis. (B) Between stage I/II and III/IV samples, differential 

expression analysis on the ICD-correlated genes with differences was performed. (C) 

Mutation landscape of ICD-correlated genes in the TCGA-CRC cohort. (D) CNV 

frequencies of ICD-correlated genes. 

 

 

 

Figure 2. ICD-related key gene screening 

(A) Scale-free fit index analyses of network topologies for various soft-thresholding 
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powers. (B) Gene clustering dendrogram based on topological overlaps. Various 

modules were assigned different colors. (C) Module and clinical trait correlation study. 

MM and GS correlation analysis. Correlation analysis using scatter plots of the pink 

and (D) turquoise modules (E). 

 

 

Figure 3. ICD-related genes with prognostic significance 

(A) The univariate Cox regression analysis of ICD-related genes was presented as forest 

plot. (B) LASSO regression complexity controlled by the lambda. (C) LASSO 

regression confidence intervals of λ. (D) LASSO regression coefficients of the three 

key prognostic genes. (E-G) According to the expressions of key prognostic genes, the 

OS in low and high expression groups was visually compared according to Kaplan-

Meier curves. 
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Figure 4. Evaluation and validation of ICDRS. 

Kaplan‐Meier curves of OS between the low‐risk and high‐risk groups based on the 

median ICDRS in the TCGA-CRC cohort. (B) According to the median ICDRS value 

in the validation cohort, Kaplan‐Meier curves of OS were plotted for the two risk groups. 

(C) Risk score distribution in the TCGA-CRC cohort. (D) Risk score distribution in the 

validation cohort. (E) Univariate and multivariate Cox regression analyses to calculate 

risk score for TCGA-CRC patients. (F) Using univariate and multivariate Cox 

regression analyses for assessing the risk scores in validation cohort.  
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Figure 5. Association between the ICDRS signature and molecular traits 

(A) The 10 most frequently mutated genes in the high-risk group were displayed in an 

oncoplot. (B) The 10 most frequently mutated genes in the low-risk group were 

displayed in an oncoplot. (C) Variations in copy numbers in the high-risk group. (D) 

Copy number variations in the low-risk group. (E) The distribution of copy number 

variations between the two risk groups. (F) Heatmap of the 50 signature pathway 

activity scores between the two risk groups.  
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Figure 6. The tumor immune microenvironment and immunogenomic 

characteristics of CRC related to the ICDRS 

ESTIMATE score comparison (A), immune score (B), stromal score (C), and tumor 

purity (D) calculated using ESTIMATE between the high- and low-risk groups. (E) 
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Comparison of the immune cell abundances between the two risk groups. Spearman 

correlation between the ICDRS risk score and tumor mutation burden (F), TCR 

diversity (G), and cytolytic activity (H). (I) ICDRS risk score distribution in the MSI-

high and MSI-stability cohorts. To determine significance, the Wilcoxon rank-sum test 

was utilized. ‘ns’: P-values > 0.05, ‘∗’: P-values < 0.05, ‘∗∗’: P-values < 0.01, ‘∗∗∗’: 

P-values < 0.001, and ‘∗∗∗∗’: P-values < 0.0001. 

 

 

Figure 7. Correlation of the sensitivity of drugs with ICDRS signature 

(A) Top six agents negatively associated with ICDRS. (B) Top six agents positive 

associated with ICDRS. 
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Figure 8. The role of ICDRS signature on the biological function of CRC cells 

(A) The mRNA expression levels of NRP1, CLMP, and PLEKHO in NCM460 and 

Caco2 cells, respectively. (B) The protein expression levels of NRP1, CLMP, and 

PLEKHO in NCM460 and Caco2 cells, respectively. (C) Based on qRT-PCR to verify 

the efficiency of NRP1 knockdown (si-NRP1#1 and si-NRP1#2). (D) CCK-8 assay to 

verify the effect of NRP1 knockdown on the proliferative capacity of CRC cells. (E) 

Wound healing assay to assess the effect of NRP1 on the migration of CRC cells. (F) 

Transwell assay to assess the ability of NRP1 knockdown to inhibit invasion of CRC 

cells. All procedures were subjected to three independent repetitive tests. ‘∗’: P-values 

< 0.05, ‘∗∗’: P-values < 0.01, ‘∗∗∗’: P-values < 0.001, and ‘∗∗∗∗’: P-values < 0.0001. 
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