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ABSTRACT 

Differentiating early-stage breast cancer from benign breast masses is crucial for radiologists. 

Additionally, accurately assessing axillary lymph node metastasis (ALNM) plays a significant 

role in clinical management and prognosis for breast cancer patients. Chest computed 

tomography (CT) is a commonly used imaging modality in physical and preoperative 

evaluations. This study aims to develop a deep learning model based on chest CT imaging to 

improve the preliminary assessment of breast lesions, potentially reducing the need for costly 

follow-up procedures such as magnetic resonance imaging (MRI) or positron emission 

tomography-computed tomography (PET-CT) and alleviating the financial and emotional 

burden on patients. We retrospectively collected chest CT images from 482 patients with breast 

masses, classifying them as benign (n=224) or malignant (n=258) based on pathological 

findings. The malignant group was further categorized into ALNM-positive (n=91) and 

ALNM-negative (n=167) subgroups. Patients were randomly divided into training, validation, 

and test sets in an 8:1:1 ratio, with the test set excluded from model development. All patients 

underwent non-contrast chest CT before surgery. After preprocessing the images through 

cropping, scaling, and standardization, we applied ResNet-34, ResNet-50, and ResNet-101 

architectures to differentiate between benign and malignant masses and to assess ALNM. 

Model performance was evaluated using sensitivity, specificity, accuracy, receiver operating 

characteristic (ROC) curves, and the area under the curve (AUC). The ResNet models 

effectively distinguished benign from malignant masses, with ResNet-101 achieving the 

highest performance (AUC: 0.964; 95% CI: 0.948–0.981). It also demonstrated excellent 

predictive capability for ALNM (AUC: 0.951; 95% CI: 0.926–0.975). In conclusion, these deep 

learning models show strong diagnostic potential for both breast mass classification and 

ALNM prediction, offering a valuable tool for improving clinical decision-making. 

Keywords: Axillary lymph node metastasis; ALNM; breast cancer; breast mass; chest CT; 

deep learning. 
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INTRODUCTION 

Breast cancer is the most prevalent malignancy among women worldwide and remains the fifth 

leading cause of cancer-related mortality in this population [1]. The American Cancer Society 

estimates that by 2025, nearly 320,000 individuals in the United States will be diagnosed with 

breast cancer, with more than 42,000 expected to succumb to the disease [2]. Early diagnosis 

and timely intervention are critical for improving breast cancer prognosis [3,4], underscoring 

the need for effective screening and diagnostic strategies.Another key factor influencing 

prognosis is the evaluation of axillary lymph node (ALN) involvement. An accurate assessment 

of axillary lymph node metastasis (ALNM) helps clinicians determine disease stage, select 

appropriate surgical interventions, and develop postoperative adjuvant treatment plans [5,6]. 

Conventional breast imaging methods include mammography, ultrasound, magnetic resonance 

imaging (MRI), and positron emission tomography-computed tomography (PET-CT). 

However, these techniques have certain limitations, such as patient discomfort, difficulty in 

obtaining definitive diagnoses with a single modality, high costs, and prolonged examination 

times. With the increasing prevalence of physical examinations and standardized hospital 

protocols—especially after the COVID-19 pandemic—the number of chest computed 

tomography (CT) scans has risen significantly, covering a broad range of clinical indications. 

Although chest CT is not a routine screening tool for breast lesions, its imaging scope typically 

includes the entire breast region. Several studies have explored the potential of utilizing this 

incidental imaging data for breast cancer diagnosis [7,8]. As a result, chest CT is becoming an 

increasingly viable first-line diagnostic tool for detecting new breast lesions [9,10].In chest CT 

images of advanced breast cancer, features such as irregular tumor edges, asymmetric shape, 

skin thickening, lymph node enlargement, and chest wall or skin invasion are often prominent. 

In contrast, early-stage breast cancer presents with subtler characteristics, making it more 

challenging to differentiate from benign masses with the naked eye. Thus, distinguishing early 

breast cancer from benign lesions is crucial for improving patient outcomes.Additionally, prior 

research has demonstrated that tumor characteristics—such as morphology, density or signal 

intensity, and margin definition—can serve as predictive indicators of axillary lymph node 

metastasis [11,12]. Therefore, in this study, we aimed to develop a noninvasive and accurate 

method to predict ALNM status using chest CT imaging data. 

In recent years, the rapid advancement of artificial intelligence (AI) has positioned AI-assisted 

diagnostic imaging as a key research focus, significantly transforming the field of medical 

imaging. Unlike traditional machine learning methods, which require manual feature 
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extraction, deep learning autonomously learns features directly from data using artificial neural 

network architectures. In computer vision tasks, Convolutional Neural Networks (CNNs) have 

demonstrated remarkable efficacy.Several clinical applications of CNNs have been proposed, 

particularly in radiology, where they have been extensively studied for classification, detection, 

and segmentation[13]. Koh et al.[14] evaluated the performance of a RetinaNet-based network 

in detecting breast cancer on contrast-enhanced chest CT images. Their results indicated that 

the deep learning algorithm could sensitively identify breast cancer on CT scans. However, the 

study lacked a benign control group, raising concerns about the robustness and generalizability 

of the findings. Zhang et al.[15] and Yang et al.[16] developed and validated deep learning 

models for predicting ALNM in breast cancer patients using multi-phase CT images. These 

studies employed rigorous methodologies, and their models demonstrated strong predictive 

accuracy. While deep learning algorithms based on chest CT images show promise for 

improving early breast cancer diagnosis and ALNM prediction[14-16], most prior studies have 

focused on contrast-enhanced CT images. The use of contrast agents, however, carries potential 

risks such as allergic reactions and nephrotoxicity. Additionally, existing models often predict 

either the benign/malignant nature of breast masses or ALNM, with relatively few capable of 

addressing both simultaneously. Our study aims to develop a robust deep learning model using 

non-contrast chest CT images to predict both the benign or malignant nature of breast masses 

and the likelihood of ALNM. By leveraging non-contrast CT images, we seek to facilitate 

preliminary diagnosis and risk assessment during routine physical examinations or initial 

hospital visits. This approach eliminates the need for contrast agents, reduces reliance on 

additional imaging modalities like MRI or PET-CT, and ultimately saves examination time and 

costs while minimizing unnecessary radiation exposure. 

MATERIALS AND METHODS  

This retrospective study received approval from the institutional review board, and the 

requirement to obtain informed consent was waived. 

Population 

This study retrospectively collected clinicopathological and imaging data from patients with 

breast masses who underwent non-contrast-enhanced chest CT scans before surgery at the First 

Affiliated Hospital of Shandong First Medical University between January 2018 and August 

2023. Based on pathological findings, patients were categorized into benign and malignant 

mass groups.The benign mass group included: ① Fibroadenoma ② Intraductal papilloma ③ 
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Other benign lesions (e.g., phyllodes tumors, breast cysts, hamartomas) The malignant mass 

group consisted exclusively of early-stage non-specific invasive carcinoma. According to the 

eighth edition of the TNM staging system and American Joint Committee on Cancer (AJCC) 

clinical staging guidelines, early-stage breast cancer is defined as T0-2N0-1M0, indicating a 

tumor diameter of ≤5 cm with axillary lymph node metastasis limited to ≤3 nodes. Based on 

postoperative pathological confirmation of axillary lymph node status, the malignant group 

was further divided into: ALNM-positive (pathological stage ≥ pN1a) ALNM-negative 

(pathological stage pN0) Inclusion Criteria: Patients who underwent non-contrast chest CT 

before surgery with documented breast mass lesions; Availability of complete clinical, 

pathological, and postoperative immunohistochemical data. Exclusion Criteria: Patients who 

had a prior biopsy or neoadjuvant therapy before CT; Patients diagnosed with advanced breast 

cancer based on pathological staging; Patients with incomplete or poor-quality imaging data. 

The inclusion and exclusion process is illustrated in Figure 1. Ultimately, 482 patients were 

enrolled, comprising 224 benign and 258 malignant cases. Among the malignant cases, 91 were 

ALNM-positive and 167 were ALNM-negative. Baseline characteristics for both groups are 

summarized in Table 2, with further details on the ALNM subgroups in Table 3. Patients were 

randomly allocated into training (n = 386), validation (n = 48), and test (n = 48) sets in an 8:1:1 

ratio, with the test set excluded from algorithm development. 

CT imaging parameters 

Non-contrast chest CT images were acquired using various computed tomography (CT) 

scanners, including the Insurance CT (Philips), uCT550 (United Shadow), Revolution 256 (GE 

Healthcare), uCT960+ (United Shadow), and Discovery CT750 HD (GE Healthcare). Patients 

were positioned supine with arms raised. The scans extended from the thoracic inlet to the 

posterior costophrenic angle and were performed at 120 kV with variable tube currents ranging 

from 100 to 300 mA.Other scanning parameters included a pitch of 0.8–1.0, a matrix of 512 × 

512, a slice thickness of 1–1.25 mm, a window width of 350 Hounsfield units (HU), and a 

window level of +40 HU. To ensure comprehensive visualization of the entire breast region 

and prevent any omission of breast mass information, axial thin-section mediastinal window 

images were selected for analysis. 

Image processing 

First, diagnostic radiologists re-evaluated the collected chest CT images and delineated the 

region fully covering the breast tissue (Figure 2). This process was carried out by two doctors 
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with five years of experience in breast imaging. In cases of disagreement, a senior doctor with 

15 years of experience provided an independent judgment. Subsequently, all re-framed images 

were resized to 224×224 pixels. Finally, image normalization was applied using Equation (1) 

to scale pixel values within the range [0,1]. 

𝑁𝑜𝑟𝑚 =
𝑥𝑖 −  𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥 (𝑥)  −  𝑚𝑖𝑛 (𝑥)
 

 

where xi represents the pixel value, while max(x) and min(x) represent the maximum 

and minimum values of the image pixels, respectively. 

Development of Deep learning models 

The Residual Network (ResNet) is a deep CNN architecture widely used for breast tumor 

detection across various imaging modalities, including histopathological images, 

mammograms, MRI scans, ultrasound (US), and CT images [17-20]. Its strong generalization 

ability and robustness in handling variability in medical images make it a reliable 

choice.Different ResNet models can be configured by adjusting the number of channels and 

residual modules, such as ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152. Figure 

3 illustrates the ResNet101 architecture as an example. However, previous studies [21,22] 

indicate that excessively increasing network depth can lead to accuracy plateauing or even 

degrading, while also increasing computational costs. To balance classification accuracy and 

operational efficiency, we developed prediction models based on ResNet34, ResNet50, and 

ResNet101 and evaluated their performance. The workflow for these models is shown in Figure 

4. Our study utilizes chest CT images of breast masses at thin-layer mediastinal windows as 

input, with a feature classifier employing a Softmax scoring threshold of 0.5 for classification. 

The models were trained to predict benign and malignant breast masses as well as axillary 

lymph node metastasis.The predictive models were trained and tested on a Windows-based 

image workstation using Python, the open-source deep learning library Torch, and an NVIDIA 

GeForce GTX 3080 Ti GPU. The detailed learning parameters for each model are presented in 

Table 1. Training was conducted over 100 epochs with a batch size of 16 samples per training 

set. The learning rate varied between 0.001 and 0.0001. After training, the algorithm was 

evaluated on a test set, producing probability scores ranging from 0 to 1 for early breast cancer 

detection and the presence of positive axillary lymph nodes. 
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Ethical statement 

This retrospective study was approved by the First Affiliated Hospital of Shandong First 

Medical University (Shandong Provincial Qianfoshan Hospital), the Medical Ethics 

Committee (No. 2025-S026). The study adhered to local regulations and institutional 

requirements, and was conducted in accordance with the Declaration of Helsinki. The 

requirement for informed consent was waived due to the retrospective study design.  

Statistical analysis 

All statistical analyses were performed using SPSS (version 26.0) and MedCalc (version 20.0). 

Normality and homogeneity of variance were assessed using the Shapiro-Wilk test and 

Levene's test, respectively. Continuous variables following a normal distribution were 

presented as mean ± standard deviation (SD), while those with a skewed distribution were 

expressed as median and interquartile range (IQR). Categorical data were reported as 

frequencies. For group comparisons, independent-sample t-tests were used for normally 

distributed continuous variables, while Mann-Whitney U tests were applied to non-normally 

distributed data. Chi-square tests were conducted for categorical variables. A p-value of 

&lt;0.05 was considered statistically significant.The predictive model's performance was 

evaluated using accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value 

(PPV), and negative predictive value (NPV). Additionally, receiver operating characteristic 

(ROC) curve analysis and the area under the curve (AUC) were used to assess the model's 

predictive efficacy. 

RESULTS 

The median age of all patients was 49 years (36.75–59). The malignant group had a median 

age of 57 years (48–67), while the benign group was significantly younger, with a median age 

of 37 years (26–49.75) (P< 0.05). However, tumor size did not differ significantly between the 

two groups.Within the malignant group, the ALNM-positive subgroup had a mean age of 55.99 

± 13.11 years and a mean tumor size of 2.52 ± 0.80 cm, whereas the ALNM-negative subgroup 

had a mean age of 57.69 ± 12.02 years and a mean tumor size of 2.43 ± 0.85 cm. No statistically 

significant differences were observed between these subgroups in age, tumor size, histological 

grade, or molecular subtype distribution (P > 0.05). These findings align with previous studies 

[16,23,24] and do not impact the validity of our deep learning experiments. 

The diagnostic efficiency metrics for each model are presented in Table 4. Among the models 

distinguishing between benign and malignant breast masses, the ResNet34 model achieved an 
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AUC of 0.962 (95% CI: 0.946–0.979), with an accuracy of 0.842, a sensitivity of 0.945, a 

specificity of 0.879, a PPV of 0.906, and an NPV of 0.928. The ResNet50 model showed 

similar performance, with an AUC of 0.965 (95% CI: 0.952–0.979), an accuracy of 0.818, a 

sensitivity of 0.937, a specificity of 0.869, a PPV of 0.898, and an NPV of 0.917. The 

ResNet101 model performed comparably, achieving an AUC of 0.964 (95% CI: 0.948–0.981), 

an accuracy of 0.859, a sensitivity of 0.929, a specificity of 0.917, a PPV of 0.933, and an NPV 

of 0.913. While the ResNet50 and ResNet101 models had similar AUC and NPV values, a 

comprehensive assessment of overall accuracy and efficacy indicated that the ResNet101 

model exhibited superior classification efficiency. The ROC curves for these models are shown 

in Figure 5a.For predicting axillary lymph node metastasis in early-stage breast cancer, the 

ResNet34 model achieved an AUC of 0.819 (95% CI: 0.771–0.874), with an accuracy of 0.760, 

a sensitivity of 0.730, a specificity of 0.733, a PPV of 0.596, and an NPV of 0.834. The 

ResNet50 model demonstrated better performance, with an AUC of 0.936 (95% CI: 0.909–

0.966), an accuracy of 0.858, a sensitivity of 0.843, a specificity of 0.873, a PPV of 0.781, and 

an NPV of 0.911. The ResNet101 model excelled further, achieving an AUC of 0.951 (95% 

CI: 0.926–0.975), an accuracy of 0.874, a sensitivity of 0.865, a specificity of 0.909, a PPV of 

0.837, and an NPV of 0.926. The results indicate that prediction efficiency improved with the 

number of convolutional layers, as reflected in the ROC curves in Figure 5b.Overall, the 

models demonstrated stronger predictive performance in distinguishing benign from malignant 

breast masses than in predicting axillary lymph node metastasis. Among the three models 

evaluated, ResNet101 consistently exhibited the best performance across both tasks. 

DISCUSSION 

In this study, we successfully developed deep learning models with various architectures based 

on chest CT images. Our results demonstrate that these models can predict the nature of breast 

masses and the presence or absence of axillary lymph node metastasis, with the ResNet101 

model exhibiting the best predictive performance. This finding underscores the potential of 

deep learning models to enhance radiologists' ability to assess breast abnormalities. Numerous 

studies have focused on differentiating benign from malignant breast tumors [14,25,26]. Unlike 

middle and late-stage breast cancer, early-stage breast cancer often presents subtle imaging 

characteristics, making visual differentiation more challenging. However, with increasing 

public health awareness and the widespread adoption of routine physical examinations, the 

detection window for breast cancer has advanced. Consequently, early-stage breast cancer 

diagnoses have risen, while middle and late-stage diagnoses have declined, particularly in 



 

10 

 

developed countries with well-established healthcare systems [27]. Given this trend, 

distinguishing early-stage breast cancer from benign breast masses is of significant clinical 

importance. Additionally, assessing axillary lymph node metastasis in early-stage cases is 

crucial for guiding surgical decisions and postoperative management.Non-contrast chest CT, a 

standard diagnostic tool for hospitalized patients and a common physical examination method, 

is primarily used to evaluate lung, cardiac, and mediastinal conditions. However, breast lesions 

are often overlooked [14]. While mammography and ultrasound remain the most widely used 

breast cancer screening methods [18,28], non-contrast chest CT offers several advantages. 

Unlike mammography, it is painless, does not require multiple patient positions, and thus 

improves patient compliance while reducing anxiety. Compared to breast ultrasound, it 

provides a broader imaging range, higher spatial resolution, and clearer visualization of tumors 

and peritumoral structures. Additionally, non-contrast chest CT emits lower radiation doses 

than enhanced CT and PET-CT scans, eliminates the need for contrast agents, and reduces 

potential side effects—making it a safer, non-invasive alternative. It is also faster, more 

convenient, and more affordable than breast MRI.In conclusion, non-contrast chest CT presents 

an effective and patient-friendly option for breast cancer screening and evaluation. In future 

clinical practice, deep learning models could analyze routine chest CT images to provide direct 

and accurate breast lesion assessments, streamlining the diagnostic process. 

In chest CT imaging for breast cancer diagnosis, previous studies have demonstrated the 

efficacy of radiomics—an approach that extracts quantitative features from medical imaging—

for predicting breast lesions. For instance, some studies have used radiomics with chest CT 

images to characterize breast masses. Caballo et al. [29] systematically quantified the 

morphological characteristics of breast masses, extracted tumor margin features, and employed 

a linear discriminant analysis (LDA) classifier to develop a radiomic model for distinguishing 

between benign and malignant masses. Their model achieved an AUC of 0.90, demonstrating 

high diagnostic efficacy. However, this model was based on breast-specific CT (bCT) images, 

which require specialized equipment that is less accessible and convenient than conventional 

chest CT.Additionally, radiomic analysis has been effectively used to predict axillary lymph 

node metastasis. Tang et al. [30] and Yang et al. [31] extracted radiomic features from CECT 

images and developed machine learning models to predict ALNM in breast cancer. Their 

models achieved accuracies of 0.83 and 0.89, with AUC values of 0.91 and 0.94, respectively. 

While both studies demonstrated strong experimental designs and excellent diagnostic 

performance, they relied on CECT images, which, despite enhancing breast cancer 
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visualization, require contrast agent injection—posing a risk of adverse reactions. Overall, 

these studies indicate that CT imaging provides valuable diagnostic information for breast 

lesions and should not be overlooked. In recent years, a limited number of studies have 

developed deep learning models for the preoperative prediction of benign and malignant breast 

masses, as well as axillary lymph node metastasis. Yasaka et al. [32] created a deep learning 

model based on contrast-enhanced chest CT images, achieving an AUC of 0.967—

demonstrating its potential to assist radiologists in breast cancer detection. Similarly, Liu et al. 

[33] developed deep convolutional neural network models to predict ALN metastasis using 

CECT images. Their best-performing model, DA-VGG 19, achieved an accuracy of 0.9088. 

While these models show high AUC and accuracy, they primarily rely on CECT images and 

often address only a single prediction task, with limited exploration of multi-task models. 

Additionally, some studies have demonstrated the diagnostic value of non-contrast chest CT 

[34]. Given these findings, deep learning analysis of chest CT images—including non-contrast 

scans—holds promise for the preoperative assessment of both breast masses and axillary lymph 

node involvement in breast cancer. 

In the present study, the subjects consisted of patients with benign masses and early-stage 

breast cancer rather than a natural dataset, leading to skewed age and tumor size distributions 

across all participants. The deep learning models developed based on chest CT images 

demonstrated improved accuracy in distinguishing between benign and malignant breast 

masses and predicting axillary lymph node metastasis (ALNM). These findings align with the 

results reported by Yasaka et al. and Liu et al. [32,33].In both prediction tasks, the performance 

of the three models showed a gradual improvement as the number of layers increased, 

consistent with He et al.'s [21] research on the relationship between network depth and accuracy 

in ResNet. Furthermore, a comparison of the two tasks revealed that distinguishing between 

benign and malignant breast masses (task a) outperformed the prediction of ALNM (task b). 

This discrepancy may stem from the fact that breast mass features—such as shape, edge, and 

density—are typically more distinct and, therefore, easier for deep learning models to capture 

[26,32]. In contrast, ALNM prediction may involve more complex and multifactorial 

characteristics [15]. Additionally, our study focused exclusively on early-stage breast cancer 

for ALNM prediction, where malignant traits were less pronounced, potentially affecting the 

predictive results.Moving forward, expanding our dataset to include a broader range of cases 

will be essential. Moreover, we aim to develop models specifically optimized for ALNM 

prediction to further enhance performance. This study leveraged breast imaging information 
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from non-contrast chest CT scans, offering a novel approach to breast lesion screening. Since 

chest CT is commonly performed in routine health checkups, integrating breast lesion 

assessment into this process could facilitate the clinical application of our models. 

LimitationsOur study has some limitations. First, it is a retrospective analysis that lacks multi-

center data, necessitating future multi-center external validation and prospective studies to 

confirm these findings. Second, the malignant group in our dataset consisted solely of early-

stage breast cancer cases, and the dataset used for ALNM prediction was imbalanced, 

underscoring the need for more comprehensive datasets in future research. Third, the CT 

images were obtained from various scanners, introducing potential noise that could impact 

model accuracy. However, given the principles of multi-center validation, we believe the 

models developed in this study are relatively robust and likely to yield similar results in other 

medical centers. 

CONCLUSION 

In conclusion, our findings suggest that deep learning models using non-contrast chest CT 

images can provide clinicians with valuable preoperative insights into breast masses and 

axillary lymph nodes during physical examinations or initial hospital admissions. This, in turn, 

supports clinical decision-making. Our study highlights the convergence of conventional 

imaging techniques and advanced AI technology, offering a more cost-effective and efficient 

approach to predicting breast lesions. 

ACKNOWLEDGMENTS 

The authors thank Miss. Mengying Wang and Mr. Xiaoming Xi from the School of Computer 

Science and Technology of Shandong Jianzhu University for providing us with software 

support and post-processing guidance.  

Conflicts of interest: Authors declare no conflict of interest. 

Funding: This study was supported by the Natural Science Foundation of Shandong Province 

(ZR2023QG014) and Shandong-Chongqing science and technology cooperation project 

(2024LYXZ021). 

Data availability: The raw data supporting the conclusions of this article will be made 

available by the corresponding author, without undue reservation. 



 

13 

 

Submitted: 07 January 2025 

Accepted: 05 February 2025 

Published online: 17 March 2025 

REFERENCES 

[1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global 

Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 

Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209-249. 

https://doi.org/10.3322/caac.21660. 

[2] Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA 

Cancer J Clin 2025;75(1):10-45. https://doi.org/10.3322/caac.21871. 

[3] Yuan Y, Yang F, Wang Y, Guo Y. Factors associated with liver cancer prognosis after 

hepatectomy: A retrospective cohort study. Medicine (Baltimore) 

2021;100(42):e27378. https://doi.org/10.1097/MD.0000000000027378.  

[4] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy 

and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview 

of the randomised trials. Lancet 2005;365(9472):1687-1717. https://doi.org/10.1016/S0140-

6736(05)66544-0. 

[5] Chang JM, Leung JWT, Moy L, Ha SM, Moon WK. Axillary Nodal Evaluation in Breast 

Cancer: State of the Art. Radiology 2020;295(3):500-515. 

https://doi.org/10.1148/radiol.2020192534. 

[6] Maxwell F, de Margerie Mellon C, Bricout M, Cauderlier E, Chapelier M, Albiter M, et 

al. Diagnostic strategy for the assessment of axillary lymph node status in breast 

https://doi.org/10.1148/radiol.2020192534.


 

14 

 

cancer. Diagn Interv Imaging 2015;96(10):1089-

1101. https://doi.org/10.1016/j.diii.2015.07.007. 

[7] Wright JL, Bazan JG. Time to Reconsider the Role of Diagnostic Chest Computed 

Tomography in Early-Stage Breast Cancer? Int J Radiat Oncol Biol Phys 2024;118(1):104-

106. https://doi.org/10.1016/j.ijrobp.2023.07.032. 

[8] Agliata MF, Calabrò N, Tricca S, Rampi AM, Gambaro ACL, Ferrante D, et al. Mammary 

nodules as incidental findings on chest computed tomography: a retrospective analysis on 

their frequency and predictive value. Radiol Med 2023;128(8):912-921. 

https://doi.org/10.1007/s11547-023-01670-1. 

[9] Bin Saeedan M, Mobara M, Arafah MA, Mohammed TL. Breast lesions on chest 

computed tomography: pictorial review with mammography and ultrasound correlation. Curr 

Probl Diagn Radiol 2015;44(2):144-154. https://doi.org/10.1067/j.cpradiol.2014.09.002. 

[10] Lin WC, Hsu HH, Li CS, Yu JC, Hsu GC, Yu CP, et al. Incidentally detected 

enhancing breast lesions on chest computed tomography. Korean J Radiol 2011;12(1):44-51. 

https://doi.org/10.3348/kjr.2011.12.1.44. 

[11] Gong X, Guo Y, Zhu T, Peng X, Xing D, Zhang M. Diagnostic performance of 

radiomics in predicting axillary lymph node metastasis in breast cancer: A systematic review 

and meta-analysis. Front Oncol 2022;12:1046005. 

https://doi.org/10.3389/fonc.2022.1046005. 

[12] Zhang X, Liu M, Ren W, Sun J, Wang K, Xi X, et al. Predicting of axillary lymph 

node metastasis in invasive breast cancer using multiparametric MRI dataset based on CNN 

model. Front Oncol 2022;12:1069733. https://doi.org/10.3389/fonc.2022.1069733. 



 

15 

 

[13] Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep 

Learning: A Primer for Radiologists. Radiographics 2017;37(7):2113-2131. 

https://doi.org/10.1148/rg.2017170077. 

[14] Koh J, Yoon Y, Kim S, Han K, Kim EK. Deep Learning for the Detection of Breast 

Cancers on Chest Computed Tomography. Clin Breast Cancer 2022;22(1):26-31. 

https://doi.org/10.1016/j.clbc.2021.04.015. 

[15] Zhang J, Yin W, Yang L, Yao X. Deep Learning Radiomics Nomogram Based on 

Multiphase Computed Tomography for Predicting Axillary Lymph Node Metastasis in Breast 

Cancer. Mol Imaging Biol 2024;26(1):90-100. https://doi.org/10.1007/s11307-023-01839-0. 

[16] Yang X, Wu L, Ye W, Zhao K, Wang Y, Liu W, et al. Deep Learning Signature 

Based on Staging CT for Preoperative Prediction of Sentinel Lymph Node Metastasis in 

Breast Cancer. Acad Radiol 2020;27(9):1226-

1233. https://doi.org/10.1016/j.acra.2019.11.007. 

[17] Harrison P, Hasan R, Park K. State-of-the-Art of Breast Cancer Diagnosis in Medical 

Images via Convolutional Neural Networks (CNNs). J Healthc Inform Res 2023;7(4):387-

432. https://doi.org/10.1007/s41666-023-00144-3. 

[18] Wilding R, Sheraton VM, Soto L, Chotai N, Tan EY. Deep learning applied to breast 

imaging classification and segmentation with human expert intervention. J Ultrasound 

2022;25(3):659-666. https://doi.org/10.1007/s40477-021-00642-3. 

[19] Sharma S, Mehra R. Conventional Machine Learning and Deep Learning Approach 

for Multi-Classification of Breast Cancer Histopathology Images-a Comparative Insight. J 

Digit Imaging 2020;33(3):632-654. https://doi.org/10.1007/s10278-019-00307-y. 



 

16 

 

[20] Badawy SM, Mohamed AEA, Hefnawy AA, Zidan HE, GadAllah MT, El-Banby 

GM. Automatic semantic segmentation of breast tumors in ultrasound images based on 

combining fuzzy logic and deep learning-A feasibility study. PLoS One 

2021;16(5):e0251899. https://doi.org/10.1371/journal.pone.0251899. 

[21] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In CVPR 

2016; arXiv:1512.03385. https://doi.org/10.48550/arXiv.1512.03385. 

[22] He K, and Sun J. Convolutional neural networks at constrained time cost. In CVPR 

2015; arXiv:1412.1710. https://doi.org/10.48550/arXiv.1412.1710. 

[23] Xia H, Chen Y, Cao A, Wang Y, Huang X, Zhang S, et al. Differentiating between 

benign and malignant breast lesions using dual-energy CT-based model: development and 

validation. Insights Imaging 2024;15(1):173. https://doi.org/10.1186/s13244-024-01752-2. 

[24] Ibrahim EH, Ali TA, Sharbatti S, Ismail MK, Rahamathullah N, Bylappa SK, et al. 

Histopathological Profile of Different Breast Lesions: A Single-Center Observational 

Study. Cureus 2024;16(5):e60408. https://doi.org/10.7759/cureus.60408. 

[25] Din NMU, Dar RA, Rasool M, Assad A. Breast cancer detection using deep learning: 

Datasets, methods, and challenges ahead. Comput Biol Med 2022;149:106073. 

https://doi.org/10.1016/j.compbiomed.2022.106073.  

[26] Qin J, Qin X, Duan Y, Xie Y, Zhou Y, Zhang C. Potential added value of computed 

tomography radiomics to multimodal prediction models for benign and malignant breast 

tumors. Transl Cancer Res 2024;13(1):317-329. https://doi.org/10.21037/tcr-23-1042. 

[27] da Costa Vieira RA, Biller G, Uemura G, Ruiz CA, Curado MP. Breast cancer 

screening in developing countries. Clinics (Sao Paulo) 2017;72(4):244-

253. https://doi.org/10.6061/clinics/2017(04)09. 

https://doi.org/10.48550/arXiv.1412.1710
https://doi.org/10.1016/j.compbiomed.2022.106073.


 

17 

 

[28] Coleman C. Early Detection and Screening for Breast Cancer. Semin Oncol Nurs 

2017;33(2):141-155. https://doi.org/10.1016/j.soncn.2017.02.009. 

[29] Caballo M, Pangallo DR, Sanderink W, Hernandez AM, Lyu SH, Molinari F, et al. 

Multi-marker quantitative radiomics for mass characterization in dedicated breast CT 

imaging. Med Phys 2021;48(1):313-328. https://doi.org/10.1002/mp.14610. 

[30] Tang Y, Che X, Wang W, Su S, Nie Y, Yang C. Radiomics model based on features 

of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast 

cancer. Med Phys 2022;49(12):7555-7566. https://doi.org/10.1002/mp.15873. 

[31] Yang C, Dong J, Liu Z, Guo Q, Nie Y, Huang D, et al. Prediction of Metastasis in the 

Axillary Lymph Nodes of Patients With Breast Cancer: A Radiomics Method Based on 

Contrast-Enhanced Computed Tomography. Front Oncol 2021;11:726240. 

https://doi.org/10.3389/fonc.2021.726240. 

[32] Yasaka K, Sato C, Hirakawa H, Fujita N, Kurokawa M, Watanabe Y, et al. Impact of 

deep learning on radiologists and radiology residents in detecting breast cancer on CT: a 

cross-vendor test study. Clin Radiol 2024;79(1):e41-e47. 

https://doi.org/10.1016/j.crad.2023.09.022. 

[33] Liu Z, Ni S, Yang C, Sun W, Huang D, Su H, et al. Axillary lymph node metastasis 

prediction by contrast-enhanced computed tomography images for breast cancer patients 

based on deep learning. Comput Biol Med 2021;136:104715. 

https://doi.org/10.1016/j.compbiomed.2021.104715. 

[34] Wang F, Wang D, Xu Y, Jiang H, Liu Y, Zhang J. Potential of the Non-Contrast-

Enhanced Chest CT Radiomics to Distinguish Molecular Subtypes of Breast Cancer: A 

Retrospective Study. Front Oncol 2022;12:848726. 

https://doi.org/10.3389/fonc.2022.848726.   



 

18 

 

TABLES AND FIGURES WITH LEGENDS 

Table 1. The learning parameters of each ResNet model. 

 ResNet 34 ResNet 50 ResNet 101 

Epoch 100 100 100 

Batch size 16 16 16 

Ir 0.001*# 0.0001*/0.001# 0.001*# 

Optimizer Adam Adam Adam 

*refers to the parameter of the ResNet 50 model for predicting benign and malignant breast 

masses; # presents the parameter of the ALNM model. 

 

Table 2. Baseline characteristics between benign and malignant groups. 

Characteristics Total Benign cohort Malignant cohort p value 

number 482 224 258  

Age, year 49 (36.75-59) 37 (26-49.75) 57 (48-67) ＜0.001 

Tumor size, cm 2.3 (1.8-3.0) 2.3 (1.6-3.2) 2.3 (1.9-3.0) 0.589 

Continuous variables with skewed distributions are presented as median and quartile. 

 

Table 3. Baseline characteristics between ALNM-positive and ALNM-negative groups. 

Characteristics ALNM-Positive ALNM-Negative p value 

number 91 167  

Age, years old 55.99±13.11 57.69±12.02 0.293 

Tumor size, cm 2.52±0.80 2.43±0.85 0.406 

Histologic grade (%)   0.143 
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  Ⅰ 6（6.6） 11（6.6）  

  Ⅱ 60（65.9） 90（53.9）  

  Ⅲ 25（27.5） 66（39.5）  

Molecular subtype (%)   0.080 

  Luminal A 46（50.5） 62（37.1）  

  Luminal B 28（30.8） 55（32.9）  

  HER2-positive 9（9.9） 18（10.8）  

  TN 8（8.8） 32（19.2）  

Continuous variables are described as mean ± standard deviation, and categorical variables 

are presented as numbers (%). ALNM: Axillary lymph node metastasis; TN: Triple-negative. 

 

Table 4. Performance of the Deep learning algorithm on chest CT in the test sets. 

 ACC SEN SPE PPV NPV AUC (95%CI) 

Prediction model of benign and malignant breast masses 

ResNet 34 0.842 0.945 0.879 0.906 0.928 0.962 (0.946-0.979) 

ResNet 50 0.818 0.937 0.869 0.898 0.917 0.965 (0.952-0.979) 

ResNet 101 0.859 0.929 0.917 0.933 0.913 0.964 (0.948-0.981) 

Prediction model of axillary lymph node metastasis 

ResNet 34 0.760 0.730 0.733 0.596 0.834 0.819 (0.771-0.874) 

ResNet 50 0.858 0.843 0.873 0.781 0.911 0.936 (0.909-0.966) 

ResNet 101 0.874 0.865 0.909 0.837 0.926 0.951 (0.926-0.975) 

ACC: Accuracy; AUC: Area under the receiver operating characteristic curve; CI: 

Confidence interval; NPV: Negative predictive value; PPV: Positive predictive value; SEN: 

Sensitivity; SPE: Specificity. 
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Figure 1. The enrollment process of patients with breast masses.  

 

Figure 2. An example of chest CT images that completely include breast tissue. Arrows 

point to the locations of breast masses. (A) represents a benign breast mass (breast 

fibroadenoma); (B) denotes a malignant breast mass (early non-specific invasive breast 

cancer).  
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Figure 3. ResNet101 architecture. Res1 and Res2 stand for two types of residual block 

structures. C indicates the number of convolution kernels, and S represents the stride length. 

 

 

Figure 4. Workflow and the basic structure of deep learning models. B-M means 

the input of all chest CT images to identify benign and malignant breast masses; ALNM 

indicates the input of chest CT images of early breast cancer to predict axillary lymph node 

metastasis. 
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Figure 5. The ROC curves of the model. ROC: Receiver operating characteristic. 

 


