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ABSTRACT 

Observational studies have identified a connection between obesity and microvascular 

complications in diabetes, yet the genetic contributions to their co-occurrence remain 

incompletely understood. Our research aims to explore the shared genetic architecture 

underlying both conditions. We employed Linkage Disequilibrium Score Regression (LDSC) 

and Local Analysis of [co]Variant Association (LAVA) to assess genetic correlations between 

obesity and diabetic microvascular complications. To validate shared genetic regions, we 

conducted pleiotropic analysis under the composite null hypothesis (PLACO), functional 

mapping and annotation (FUMA), and colocalization analysis. Additionally, we applied 

Multimarker Analysis of GenoMic Annotation (MAGMA), Summary-based Mendelian 

Randomization (SMR), multi-trait colocalization, and enrichment analysis to identify potential 

functional genes and pathways. Finally, Mendelian Randomization (MR) and Latent Causal 

Variable (LCV) analysis were used to clarify causal and pleiotropic relationships across trait 

pairs. Among 21 trait pairs analyzed, 15 exhibited significant global genetic correlations, and 

97 regions showed significant local correlations. PLACO identified 3,659 to 20,489 potentially 

pleiotropic single nucleotide polymorphisms (SNPs) across 15 trait pairs, with 828 lead SNPs 

detected via FUMA. Colocalization analysis confirmed 52 shared loci. Gene-based analysis 

identified seven unique candidate pleiotropic genes, with ribosomal protein S26 (RPS26) 

emerging as the strongest shared gene. MR and LCV analyses supported a causal relationship 

between body mass index (BMI) and diabetic kidney disease (DKD). Our findings highlight a 

shared genetic basis linking obesity with diabetic microvascular complications. These insights 

offer potential pathways for understanding the mechanisms driving their comorbidity and may 

inform more integrated therapeutic approaches. 

Keywords: Shared genetic architecture; obesity; diabetic microvascular complications; 

global genetic correlation 
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INTRODUCTION 

Diabetic microvascular complications have been identified as an important cause of death in 

patients with diabetes [1]. Diabetic kidney disease (DKD), diabetic retinopathy (DR) and 

diabetic neuropathy (DN) are the hallmark manifestations of microvascular complications in 

patients with diabetes mellitus, frequently co-occurring within the affected patient cohort [2]. 

DKD can rapidly progress to end-stage kidney disease, and currently, there is no specific and 

effective drug treatment to address this issue [3]. In addition, DR can lead to vision loss, 

significantly affecting the patients' quality of life [4]. DN, which includes both peripheral and 

autonomic forms, is a prevalent complication in the diabetic population, often manifesting with 

a 'stocking and glove' distribution of sensory symptoms and potentially affecting vital organs 

such as the heart, kidneys, and bladder [5]. Obesity emerges as a pivotal determinant in the 

etiology of diabetes mellitus and a significant exacerbator of its attendant microvascular and 

macrovascular complications [6]. Weight management stands as a fundamental strategy for 

mitigating the risk of microvascular complications among individuals with diabetes [7], with 

the strategic optimization of lipid profiles further augmenting this effect [8,9]. Research has 

shown that combining lifestyle intervention and early medication treatment can preserve 

microvascular function to some extent in prediabetic patients [10]. Furthermore, a study has 

indicated that Roux-en-Y gastric bypass (RYGB) surgery can alleviate proteinuria in patients 

with type 2 diabetes mellitus (T2DM) and obesity who have early-stage chronic kidney disease 

[11]. Therefore, the American Diabetes Association (ADA) recognizes that behavioral changes, 

medication interventions, and surgical options are crucial for achieving weight loss and 

mitigating the harms caused by obesity in individuals with T2DM [12]. In conclusion, the close 

relationship between obesity and diabetic microvascular complications has been well 

established, but the specific mechanisms still require further research and elucidation. Genetic 

evidence strongly supports weight management as an important means to prevent diabetic 

microvascular complications, independent of glucose lowering [13]. This provides us with a 

new perspective to explore the possibility of a shared genetic basis between obesity and 

diabetic microvascular complications. 

Obesity and diabetic microvascular complications are thought to have a significant genetic 

foundation. Large-scale Genome-Wide Association Studies (GWAS) have uncovered 

numerous genetic markers associated with both ailments, providing substantiation for this 

standpoint [14,15]. The domain of research investigating the interplay between genetics and 

illnesses has made notable strides. Genetic links have been confirmed for various disorders, 
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like the relationship between Body Mass Index (BMI) and Polycystic Ovary Syndrome [16], 

as well as the correlation between multiple sclerosis and inflammatory bowel diseases [17]. 

However, until now, there has been limited exploration into the genetic connection between 

obesity and diabetic microvascular complications. Despite the intricate, multifactorial nature 

of these diseases, genetic factors play an essential role in their initiation and progression. In-

depth exploration of specific genetic loci associated with genetic correlations is crucial for 

understanding the genetic basis of diseases and devising more effective prevention and 

treatment strategies [18]. 

In this comprehensive genome-wide shared genetic study, we conducted an extensive 

comparative analysis of seven obesity-related traits (BMI, waist-to-hip ratio [WHR], waist-to-

hip ratio adjusted for body mass index [WHRadjBMI], low-density lipoprotein cholesterol 

[LDL-C], high-density lipoprotein cholesterol [HDL-C], total cholesterol [TC], triglycerides 

[TG]) and three types of diabetic microvascular complications (DKD, DR and DN). Our aim 

was to explore potential shared genetic factors between them, using various statistical genetics 

methodologies. Initially, we investigated the global and local genetic correlations among each 

pair of traits. Subsequently, a comprehensive array of methodologies, including Pleiotropic 

analysis under composite null hypothesis (PLACO), Functional Mapping and Annotation 

(FUMA), colocalization, Multimarker Analysis of GenoMic Annotation (MAGMA), summary 

data-based Mendelian randomization (SMR) and multi-trait colocalization, was employed to 

identify pleiotropic variants and genes. Finally, the potential causality or pleiotropy behind 

these diseases were further explored by utilizing Mendelian randomization (MR) and Latent 

Causal Variable (LCV). A flowchart of the main analytic steps is provided in Figure 1. 

MATERIALS AND METHODS  

GWAS Data sets 

The obesity-related information primarily originated from two main sources. The first dataset  

included BMI, WHR, and WHRadjBMI data, which resulted from a comprehensive meta-

analysis using information from the UK Biobank and the GIANT consortium [19]. This 

particular study stands as the most extensive genome-wide association analysis on obesity to 

date, encompassing approximately 700,000 individuals with European heritage [19]. The 

second dataset originates from summarized statistics provided by the Global Lipids Genetics 

Consortium, encompassing 1,654,960 participants from five distinct genetic ancestry 
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groups[20]. For our research, we specifically employed the GWAS summarized data for the 

four lipid characteristics (LDL-C, HDL-C, TC, and TG) from a European cohort. The GWAS 

researchers adjusted for age, age squared, sex, principal components, and study-specific 

covariates to consider potential influences on the results[20]. The original data for diabetic 

microvascular complications comes from the Finnish Biobank Alliance (FinnGen) version 9 

data. The genetic association cohorts for DKD, DN, and DR consist of 4,111 cases, 2,843 cases, 

and 10,413 cases respectively, contrasted against 308,539, 271,817, and 308,633 controls, 

respectively [21]. DKD, DR and DN were identified using ICD-10 codes. All the datasets used 

in our study have been publicly accessible (Table S1). 

STATISTICAL ANALYSIS 

Identification of genetic correlations 

LDSC is a commonly used method to estimate the genetic correlation between different traits 

through summary statistics from GWAS. In this study, we utilized LDSC to estimate the genetic 

correlation between obesity-related traits and microvascular complications of diabetes[22]. We 

preprocessed the data by performing single nucleotide polymorphisms (SNPs) filtering using 

HapMap3, which helps ensure the quality and consistency of the SNPs used. The genetic 

correlation estimates (rg) range from -1 to 1, with the absolute value of rg closer to 1 indicating 

a strong genetic correlation between the two traits and implying a significant shared genetic 

basis. Conversely, as rg approaches 0, the genetic correlation becomes weaker. It's generally 

considered that rg > 0.1 is indicative of a meaningful genetic correlation between the two traits. 

For the LDSC-derived P-value, we applied the Bonferroni correction, defining statistical 

significance as P < 0.002 (0.05/21). In the whole-genome assessment, it’s possible to overlook 

local regional correlations between two traits. Therefore, we employed the Local Analysis of 

[co]Variant Association (LAVA) method to gain deeper insights into the shared genetic factors 

in specific genomic regions between two diseases [23]. This approach divides the human 

genome into 2495 independent segments of approximately 1 Mb each, allowing for precise 

evaluation of the associations between genetic variations within specific regions and the traits. 

Applying a Bonferroni correction, we considered a correlation significant if the P-value was 

below the threshold of 0.00002 (0.05/2495). 

Identification of Pleiotropic regions 

PLACO is a novel statistical method used for identifying pleiotropic SNPs between two traits 
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[24]. Its core concept involves testing SNP against a composite null hypothesis that it’s 

associated with either one or none of the traits. It employs the multiplication of two sets of Z-

statistics as input and breaks down the pleiotropic composite null hypothesis into three sub-

scenarios, along with an alternative hypothesis representing pleiotropic associations. In 

contrast to traditional SNP association analyses, PLACO, through the use of composite 

hypotheses, avoids the false positive results caused by SNP imbalances between two traits. 

Following PLACO analysis, SNPs (P < 5×10-8) are defined as significant pleiotropic variants, 

potentially exerting substantial effects across multiple traits. However, PLACO does not 

directly indicate which specific SNPs contribute most to the observed linkage disequilibrium 

(LD). To further identify SNPs that may significantly impact specific phenotypes, we utilized 

FUMA, which integrates information on LD and other genetic data to pinpoint lead SNPs by 

analyzing the aforementioned results. The analysis was conducted with an LD threshold of R2 

< 0.1 within a 1 Mb window [25]. We undertook a comprehensive colocalization analysis using 

the locus containing aforementioned lead SNPs in order to investigate potential connections 

between genetic variations and a diverse range of phenotypic characteristics. Colocalization 

analysis strictly adhere to five mutually exclusive hypotheses, which includes H0: no 

association with any traits, H1 and H2: a locus being associated with only one trait, H3: 

association with both traits but at separate causal variants, and H4: association with both traits 

at a shared causal variant. If the posterior probability of H4 (PPH4) value exceeds 0.95, we can 

confidently conclude that this locus exhibits shared genetic effects across different traits [26]. 

Functional annotation and enrichment analysis 

MAGMA software serves as a valuable tool for gene-based analysis of GWAS. This approach 

involves aggregating the collective associations of multiple SNPs within entire gene regions, 

while accounting for the influence of LD between SNPs，which efficiently mapped the 

associated SNPs to their corresponding genes, providing a foundation for thorough genome 

annotation. We adhered to the default settings of the FUMA software and integrated the SNPs 

P-values obtained from previous PLACO analysis, facilitating the execution of the MAGMA 

analysis [27]. Moreover, we utilized SMR, which integrates genetic variation from GWAS with 

biological data such as gene expression or abundance of protein, to explore the associations 

between gene or protein and target traits [28]. In this study, we chose SNPs from 8 different 

GWAS datasets as instrumental variables, each representing distinct traits like BMI, WHR, 

WHRadjBMI, TG, HDL-C, DKD, DR and DN. These SNPs from GWAS datasets were then 

subjected to joint analysis with expression quantitative trait loci (eQTL) in blood, kidney and 
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pancreas as well as protein quantitative trait loci (pQTL) in blood, aiming to gain a deeper 

understanding of their roles in different tissues [29,30]. To assess whether there are collinearity 

form intergenic linkage effects in the observed relationships between QTL and traits, we 

employed the heterogeneity in dependent instruments（HEIDI）test. When interpreting the 

results, we introduced a Bonferroni-corrected P-value (SMR) threshold by dividing 0.05 by the 

number of results in each group, and used a HEIDI value greater than 0.05 as the decision 

criterion. To further enhance the causality of the SMR findings, we employed the HyPrColoc 

(hypothesis prioritization for multi-trait colocalization) method to explore the potential 

existence of a shared genetic influence that contributes to these traits simultaneously. This 

method offers the advantages of hypothesis prioritization and enumerating causal 

configurations, efficiently managing various traits. It allows for rapid analysis of extensive trait 

sets while focusing on a limited set of plausible causal configurations and consider results with 

PPH4 > 0.7 to be extremely stringent [31]. In addition, to gain insights into the potential 

biological functions of the genes associated with the colocalization results and the intersection 

with MAGMA-identified genes, we conducted both Gene Ontology (GO) terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analyses using the clusterProfiler and 

pathview package, with a significance threshold of P < 0.05 [32,33]. 
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Assessment causal and pleiotropy relationship  

MR and LCV were utilized to investigate the causal and pleiotropic relationships between 

various shape pairs, providing two different viewpoints. MR used genetic variants as 

instrumental variables to evaluate the possible causal relationships between environmental 

factors or behaviors and diseases. The underlying hypothesis posited that a robust association 

between a genetic variant and a particular exposure, coupled with the exposure's correlation to 

disease risk, suggested a probable causal influence of the variant on the propensity for disease 

manifestation[34,35]. The Cochran’s Q test was used to assess the heterogeneity of individual 

causal effects and MR-Egger's intercept was also utilized to evaluate horizontal pleiotropy. 

LCV provided a more refined framework for dissecting the causal structure behind genetic 

correlations by introducing a latent causal variable. If a trait exhibited a strong genetic 

correlation with this latent causal variable, it was considered to have a partial genetic causal 

effect on another trait at the genetic level. Furthermore, LCV, through quantifying the Genetic 

Causality Proportion (GCP) metric, evaluated the genetic causality between traits, where a 

GCP nearing 1 signified a predominant genetic causal influence and approaching 0 indicated a 

diminished causal relationship due to the significant role of pleiotropy, with the GCP's sign 

concurrently indicating the directionality of the causal effect. A GCP value surpassing the 

threshold of 0.7 was often interpreted as denoting a substantive genetic causal effect, with the 

majority of genetic correlation likely being propelled by causal mechanisms[35]. Both MR and 

LCV methodologies worked together to differentiate between pleiotropy and true causal 

relationships, offering a more comprehensive understanding of the genetic connections 

underlying complex diseases. To avoid the false positive caused by multiple testing, the 

Bonferroni correction test has been applied.  

RESULTS 

Overall and local genetic correlation  

The overall genetic correlation results indicate that BMI, WHR, WHRadjBMI, TG and HDL-

C exhibit moderate positive correlations with both diabetic microvascular complications. 

Among them, BMI and WHR display the strongest correlation with DKD (rg = 0.47, P = 4.725e-

26; rg = 0.47, P = 4.40e-22). Additionally, TG demonstrates a negative genetic correlation with 

both DKD, DR and DN (rg = -0.42, P = 8.062e-16; rg = -0.31, P = 2.181e-14; rg = -0.27, P = 

8.41e-09). However, TC demonstrates nearly negligible correlation with DKD, DR and DN (rg 
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= -0.01, P = 0.704; rg = -0.02, P = 0.547), similar to the results observed for LDL-C (rg = -0.05, 

P = 0.301; rg = -0.04, P = 0.358; rg = 0.05, P = 0.257). In summary, among the 21 pairs of traits, 

only 15 pairs exhibited positive results (Table 1, Figure S1 and Table S2). LAVA analysis 

identified 97 significant local genetic correlations among 21 pairs of traits. Both LDL-C and 

HDL-C exhibit the highest local genetic correlations with DKD, contributing 10 of these 

significant correlations. Whereas, the global genetic correlation analysis did not identify a 

significant relationship between LDL-C and either DR or DKD. In the global genetic 

correlation analysis, a positive relationship was observed between WHRadjBMI and DKD, 

While there was no evidence of local genetic correlation between WHRadjBMI and DKD in 

the results from the LAVA analysis. Surprisingly, despite the less satisfactory overall genetic 

correlation for TC-DKD/DR/DN, there are a total of 7, 9 and 9 significant local genetic 

correlations (Figure 2 and Table S3). 

Pleiotropic regions validation 

Within the scope of these 15 distinct traits, PLACO analysis revealed a spectrum of potential 

pleiotropic SNPs ranging from 3659 to 20,489, with a total of 37,738 unique SNPs (Figure S2). 

Subsequent meticulous scrutiny using FUMA identified a subset of 828 independent SNPs, 

representing instances of pleiotropy. Among these, the HDL-C and DR trait pair exhibited the 

highest abundance with 103 lead SNPs, while the TG-DN trait pair displayed the lowest count 

of 25 lead SNPs. Additionally, among these lead SNPs, rs429358 concurrently influenced 11 

pairs of traits, while rs7903146 impacted 7 pairs of traits (Table S4). According to 

ANNOVAR's categorization as a facet of FUMA's capabilities, among the 828 lead SNPs, 

41.7% were found to be intronic variants, while 34.6% were intergenic variants. Exonic 

variants, which included 8 noncoding RNA exonic variants, made up only 5.4% of the total. 

Furthermore, there were 20 UTR3 variants (2.4%) and 6 UTR5 variants (0.7%) (Table S4). 

Subsequent colocalization analysis unveiled 52 loci with strong colocalization signals, all 

surpassing a PPH4 threshold of 0.95. Notably, among these loci, 10 were associated with DKD, 

40 with DR, and 2 with DN. Within these loci, rs10938397 emerged as a pivotal candidate 

locus, linked to DR, and exhibiting concurrent evidence of associations with BMI, HDL-C, and 

WHR. Moreover, another SNP, rs429358, demonstrated colocalization evidence in both DKD 

and DR, displaying significant correlations with HDL-C, WHR, and WHRadjBMI traits. 

Similarly, rs7144011 showed a significant association with DR, and further analysis revealed 

its associations with a range of obesity-related characteristics, including BMI, HDL-C, TG, 

and WHR (Table 2, Figure S3 and Table S5). 
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Shared gene function and enrichment analysis 

In this study, we employed various analytical methods to delve into potential shared genetic 

influences among multiple traits. Firstly, we identified a total of 4164 pleiotropic genes through 

MAGMA analysis, of which 88 overlapped with genes in the region of the colocalization 

analysis results (Table S6). Notably, several genes such as APOE, PVRL2, and TOMM40 

exhibited significance across all seven pairs of traits, followed by APOC1 being implicated in 

five pairs of traits. Subsequently, we conducted SMR analyses on GWAS data, eQTL data 

(including whole blood, kidney, and pancreas), and whole-blood pQTL data, leading to the 

discovery of 879 shared genes and proteins. In the eQTL analysis, we found 348, 91 and 259 

shared genes in the non-MHC regions of whole blood, kidney, and pancreas, respectively. 

Particularly in kidney tissue, C4A was identified as a shared gene across multiple traits, 

encompassing WHR and DR/DKD/DN, TG and DR/DKD/DN, as well as BMI and 

DR/DKD/DN. Additionally, we observed the presence of XXbac-BPG254F23.7 as shared 

between HDL-C and DR/DKD/DN, and intriguingly, RPS26 emerged as a shared gene not only 

between TG and DR but also between HDL-C and DR/DKD. Notably, it's important to 

highlight that previous colocalization analyses focusing on HDL-C and DR had already 

pinpointed RPS26 as one of the shared genetic variants. Similarly, in pancreas tissue, RPS26 

was identified as a shared gene between TG and DR. However, no shared genes were identified 

in blood tissue (Table S7). Using pQTL data, MANBA (associated with the corresponding 

protein) was exclusively found in the BMI-DR pair (Table S8). Lastly, in the multi-trait 

colocalization analysis, we discovered a series of shared genes across different trait pairs, 

including JAZF1, NCR3LG1, RP1-239B22.5, SUOX, ZBTB20, IKZF4, and NIPSNAP1 

(Table S9). However, the most surprising finding was the identification of RPS26 between 

HDL-C and DR, as well as in eQTL (kidney) analyses. This result was consistently validated 

across multi-trait colocalization analysis, SMR analysis, and previous colocalization analyses. 

Moreover, all three analytical methods supported the lead SNP: rs11171739.  

In the GO enrichment analysis, we identified 311 enriched biological process (BP) pathways, 

33 enriched cellular component (CC) pathways, and 57 enriched molecular function (MF) 

pathways. Such as the "regulation of insulin secretion" (GO:0050796, P = 1.89e-07) pathway 

exhibited the most significant enrichment in BP, while "chylomicron" (GO:0042627, P = 3.98e-

04) and "MAP kinase kinase activity" (GO:0004708, P = 8.39e-04) showed significant 

enrichment in CC and MF, respectively (Figure 3A). Additionally, we conducted KEGG 

pathway enrichment analysis and identified 13 significantly enriched pathways, with "Insulin 
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secretion" (KEGG: hsa04911, P = 2.41-3e) displaying significant enrichment (Figure 3B). 

Causal and pleiotropy inference 

To delve into the causal relationships between diabetic microvascular complications (DKD, 

DR and DN) and obesity-related traits (HDL-C, TG, BMI, WHRadjBMI, and WHR), we 

employed a bidirectional MR approach with the Inverse Variance Weighted (IVW) method as 

the primary analytical tool. The results show clear causal relationships in only six pairs: BMI-

DKD (PIVW = 5.12e-11, OR = 1.68[1.44, 1.97]), BMI-DR (PIVW = 4.76e-13, OR = 1.44[1.30, 

1.58]), WHRadjBMI-DKD (PIVW = 7.43e-06, OR = 1.47[1.24, 1.74]), WHRadjBMI-DR (PIVW 

= 5.96e-07, OR = 1.32[1.18, 1.47], WHR-DN (PIVW = 1.10e-07, 0R = 1.81[1.45, 2.25]) and 

WHRadjBMI-DN (PIVW = 8.8e-04, 0R = 1.38[1.14, 1.67]). Additionally, all the aforementioned 

results have been subjected to heterogeneity (P > 0.05) and pleiotropy testing (P > 0.05). 

Notably, no evidence of reverse causation was observed among these factors (Figure 4 and 

Table S10). To fortify the integrity of our findings, we judiciously employed LCV. This 

rigorous approach reaffirmed the causal nexus between BMI and DKD (P = 1.55e-4, GCP = 

0.75), substantiating the robustness of this association. In contrast to the MR findings, there is 

also a strong genetic causality between HDL-C and DN (P = 4.71e-14, GCP = 0.82) (Table 

S11). 

DISCUSSION 

To the best of our knowledge, this study represents the first comprehensive genome-wide study 

delving into the pleiotropic associations underpinning the co-occurrence of obesity and 

microvascular complications in diabetes. We employed a multifaceted array of statistical 

methodologies to rigorously assess genetic correlations, pleiotropic genetic variants and loci, 

as well as explore potential shared geneset and causal relationships, and relevant biological 

pathways. These research results help eliminate confounding factors introduced by 

observational studies, elucidate the etiology and comorbidity patterns between obesity and 

diabetic microvascular complications, thus reducing the complexity of disease prevention and 

management.  

We explored the genetic connections between obesity-related traits and microvascular 

complications in diabetes, and found that there is incomplete concordance between the global 

genome and specific genomic regions. To illustrate, the correlation between TC/LDL-C and 

diabetic microvascular complications is generally weak across the global genome but became 
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noteworthy in specific genetic regions. This phenomenon likely reflects the heterogeneity of 

genetic architecture underlying complex traits, where multiple local genomic regions may 

harbor correlation signals with opposing directions or weak effect sizes. These signals 

counteract each other in global analyses, leading to an overall diluted correlation that fails to 

reach statistical significance. For instance, certain loci may simultaneously carry both pro-

disease and protective alleles, or distinct biological pathways may exert antagonistic effects on 

the phenotype. The strength of local analytical approaches lies in their capacity to resolve such 

counteracting effects, unmasking region-specific associations obscured by global methods. 

This precision enables the identification of biologically relevant targets for mechanistic studies, 

offering insights into context-dependent genetic contributions that are otherwise averaged out 

in genome-wide analyses. 

In addition, in our global genetic correlation analysis, we noted that the genetic association 

between BMI and DKD stands out prominently, which was in harmony with the results 

obtained from MR and LCV analyses. Notably, the GCP for the BMI-DKD relationship is 0.75, 

surpassing the threshold of 0.7, suggesting that the genetic connection between BMI and DKD 

is largely driven by a causal relationship, with limited influence from pleiotropy. Furthermore, 

with a positive GCP value and MR results indicating the absence of a reverse causality between 

BMI and DKD, we can reasonably infer a causal pathway: genes affect trait1 (BMI), which 

subsequently impacts trait2 (DKD). These findings are consistent with epidemiological 

research, where a substantial systematic review and meta-analysis encompassing 20 cohort 

studies have identified BMI as an independent risk factor for DKD. Specifically, for every 5 

kg/m2 increase in BMI, there is a 16% rise in the risk of DKD[36]. These results further 

underline the genetic association between BMI and DKD stemming from a causal relationship. 

Utilizing LDSC, we identified a significant genetic correlation between HDL-C and DN, with 

LCV results being consistent. However, MR analysis did not detect a significant causal effect. 

This discrepancy likely stems from methodological differences: MR relies on genetic variants 

as instruments and assumes effect proportional to exposure, while LCV considers genetic 

correlations and models pleiotropy. LCV’s flexible instrument requirements and efficient use 

of sample data give it an edge in statistical power, especially with smaller samples. Moreover, 

LCV identifies partial causal components missed by MR by quantifying the genetic causality 

proportion, particularly in complex genetic networks. 

In the course of our exploration into the common genetic framework, we undertook a thorough 

investigation of pleiotropy, encompassing both the SNP and gene levels. To identify pleiotropic 

SNPs associated with specific traits, we employed a systematic and rigorous analytical 
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approach. Initially, we performed an initial screening using PLACO, which enabled the 

identification of pleiotropic SNPs, laying the foundation for subsequent analyses. 

Subsequently, we employed FUMA to identify 828 lead SNPs carefully filtering out those in 

LD. Our colocalization analysis ultimately confirmed the existence of 52 loci with a high level 

of evidence. Furthermore, we employed a combination of methodologies, including MAGMA, 

SMR, and multivariate colocalization, to successfully identify 102 genes associated with these 

52 loci, with 48 of them being unique. Amongst these shared genes, we consider RPS26, along 

with its lead SNP: rs11171739, to be the most strongly substantiated pleiotropic risk gene.  

Ribosomal Protein S26 (RPS26) plays an important role in the biogenesis of ribosomes through 

its involvement in the processing of pre-ribosomal RNA. RPS26 exerts a significant regulatory 

influence on the conformational stability and transcriptional activity of p53, a critical mediator 

of cellular responses to stress and guardian of the genome. Experimental evidence suggests that 

both the overexpression and the reduction of RPS26 levels can culminate in the enhanced 

stabilization of p53, which in turn triggers a series of downstream cellular responses, including 

cell cycle arrest and the induction of programmed cell apoptosis[37]. Within the framework of 

diabetes mellitus pathology, the p53 assumes a predominantly deleterious role in cellular 

function and metabolic regulation. The aberrant accumulation of p53 within the cytoplasm of 

pancreatic β-cells has been associated with the disruption of Parkin-mediated mitophagy. This 

perturbation culminates in mitochondrial dysfunction, which is directly implicated in the 

etiology of impaired insulin secretion[38]. Moreover, p53 contributes to autophagic 

impairment in renal tubules by inducing the expression of miR-214, which subsequently 

suppresses the key autophagy-initiating protein kinase, unc-51–like autophagy-activating 

kinase 1 (ULK1)[39]. Recent study indicates that the regulation of p53 stability by O-GlcNAc 

modification may play a role in controlling hyperglycemia-induced cell death in retinal 

pericytes[40]. On the other hand, RPS26 orchestrates the survival of T-cells in a p53-dependent 

manner. Intriguingly, murine experiments have revealed heightened expression of RPS26 in T 

lymphocytes, and the deletion of RPS26 in T cells provokes peripheral T-cell instability and 

impedes thymic T-cell development[41]. This observation is intimately tied to the pathogenesis 

of diabetes mellitus, given the pivotal role of the immune system in the evolution of this 

condition. Additionally, multiple studies has demonstrated the close association between p53 

and obesity, with p53 being involved in important pathways related to lipid metabolism, energy 

balance, and hormone sensitivity[42–44]. Consequently, we postulate that RPS26 may 

influence diabetic microvascular complications and obesity through mechanisms involving the 

activation and stabilization of p53. To investigate RPS26's regulatory role in the p53 
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pathway, co-immunoprecipitation (co-IP) and p53-responsive luciferase assays should be 

performed to assess protein interaction and transcriptional modulation. In vivo studies using 

RPS26 transgenic/knockout mice can evaluate its pathophysiological relevance through blood 

glucose monitoring, insulin sensitivity tests, and histological analysis of diabetic 

complications. In vitro, overexpression and knockdown cell models are constructed by 

transfecting RPS26 overexpression plasmids or siRNA. Western Blot is used to detect p53 

protein levels under different RPS26 expression states. 

In addition to the conspicuous pleiotropic effects exhibited by RPS26, it’s noteworthy that 

several genes identified through multivariate colocalization analysis also demonstrate 

substantial effects. However, it’s essential to acknowledge that these genes did not surpass the 

stringent SMR threshold, primarily due to the formidable correction pressure imposed by their 

extensive pleiotropy. Zinc finger protein 1（JAZF1）, predominantly expressed within 

pancreatic tissues, is regarded as a pivotal regulator of glucose and lipid metabolism. It interacts 

with critical pathways such as Adenosine Monophosphate（AMP）, AMP-activated protein 

kinase（AMPK）and mitogen-activated protein kinase（MAPK）, exerting anti-glycemic, 

anti-lipidemic, and anti-inflammatory actions[45,46]. Similarly, ZBTB20, another zinc finger 

protein abundantly expressed in pancreatic β-cells, exerts its influence by inhibiting the 

transcription of Fructose-1,6-bisphosphatase (FBP)-1[47]. This regulatory mechanism 

regulates β-cell function and contributes to the stability of glucose homeostasis. Additionally, 

ZBTB20 also plays a significant role in hepatic de novo lipogenesis (DNL) for the regulation 

of whole-body lipid metabolism. Nipsnap1 has been extensively studied for its role in 

recruiting autophagy-related proteins to participate in the process of mitochondrial autophagy 

in the outer membrane of mitochondria. This mechanism is of paramount importance in 

regulating diabetes and its complications[48,49]. When faced with chronic cold exposure, 

impairment or inhibition of Nipsnap1 may potentially compromise cellular DNL and 

mitochondrial lipid beta-oxidation capacity[50]. IKZF4 and SUOX have been confirmed as 

susceptibility loci for diabetes[51,52]. However, research linking them to obesity remains 

limited and incomplete. Based on current research, NCR3LG1 is exclusively associated with 

various tumor diseases[53,54] and RP1-239B22.5 has received very limited attention, with 

only one study indicating higher expression levels in late-stage cancer[55]. 

In enrichment analysis, we can observe the regulation of insulin hormone secretion emphasized 

both in the BP domain of GO and in the KEGG. This suggests that controlling blood sugar 

levels is a primary task in reducing microvascular complications in diabetes. Furthermore, the 
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analysis results indicate that enrichment of CC is mainly concentrated in areas related to lipid 

metabolism, further highlighting the association between obesity and microvascular 

complications in diabetes. In terms of MF enrichment, it covers various aspects such as signal 

transduction, ion transport, protein kinase activity, calcium-dependent processes, ATPase 

coupling, and more. These signaling pathways play critical roles in processes like cell 

proliferation, differentiation, survival, and apoptosis. Their abnormal activity can lead to 

cellular dysfunction, metabolic disorders, abnormal insulin secretion, vascular changes, and so 

on[56–58]. For example, the MAPK family, which includes ERKs (extracellular-signal-

regulated kinases), JNKs (Jun amino-terminal kinases), and p38/SAPKs (stress-activated 

protein kinases), plays crucial roles in both diseases through various mechanisms, including 

inducing inflammation, interfering with insulin signaling, impacting lipid metabolism, and 

affecting pancreatic islet function[59–61]. 

While our study has yielded important findings, it’s essential to acknowledge several 

limitations that need consideration. Firstly, despite utilizing large-scale GWAS data for obesity-

related traits, the data available for DKD, DR and DN remain limited, which could potentially 

impact the comprehensiveness of our research findings. Secondly, all our data sources are 

derived from individuals of European descent, which may restrict the generalizability of our 

study results to other population groups. Future studies should include a broader range of 

ancestries to fully understand the genetic architecture of the traits under investigation. Lastly, 

to gain a more in-depth understanding of the functional and mechanistic roles of shared risk 

genes in the microvasculature of diabetes and obesity, further in vitro and in vivo studies can 

be pursued. These studies should consider tissue specificity, including but not limited to whole 

blood, kidney, and pancreas. 

CONCLUSION 

In summary, our study has identified significant genetic correlations between obesity and 

microvascular complications in diabetes, and we have successfully identified shared risk SNPs 

and genes, with RPS26 demonstrating the strongest genetic evidence. Furthermore, we have 

explored causal and pleiotropic relationships in detail, providing important insights into the 

genetic mechanisms underlying these traits. These findings provide robust support for further 

research into the pathogenesis and therapeutic approaches for these traits. 
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TABLES AND FIGURES WITH LEGENDS 

 

 

 

 

 

 

Table 1. Genome-wide genetic correlation between diabetic microvascular complications and 

obesity-related traits. 

Trait1 Trait2 rg SE P-value 

DKD BMI 0.47 0.0447 4.73e-26 

DKD WHR 0.47 0.0488 4.40e-22 

DKD WHRadjBMI 0.22 0.0437 5.07e-07 

DKD LDL-C -0.05 0.0447 3.01e-01 

DKD HDL-C 0.43 0.0473 2.17e-19 

DKD TC -0.01 0.0378 7.04e-01 

DKD TG -0.42 0.0519 8.06e-16 

DR BMI 0.38 0.0348 1.28e-27 

DR WHR 0.40 0.0347 8.54e-31 

DR WHRadjBMI 0.20 0.0321 6.72e-10 

DR LDL-C -0.04 0.0382 3.58e-01 

DR HDL-C 0.32 0.0412 6.19e-15 

DR TC -0.02 0.0324 5.47e-01 

DR TG -0.31 0.0402 2.18e-14 

DN BMI 0.36 0.0487 1.45e-13 

DN WHR 0.33 0.0425 5.01e-15 

DN WHRadjBMI 0.13 0.0368 3.01e-04 

DN LDL-C 0.05 0.0453 2.57e-01 

DN HDL-C 0.29 0.0475 7.47e-10 

DN TC 0.05 0.0403 1.97e-01 

DN TG -0.27 0.0464 8.41e-09 
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rg, genetic correlation; SE, standard error; BMI, Body Mass Index; WHR, waist-to-hip ratio; 

WHRadjBMI, waist-to-hip ratio adjusted for body mass index; LDL-C, low-density lipoproteins 

cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; 

DKD, diabetic kidney disease; DR, diabetic retinopathy; DN, diabetic neuropathy. 
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Table 2. 52 Colocalized loci identified by colocalization analysis 

Trait pair Lead SNP CHR Locus boundary* PP.H4  Trait pair Lead SNP CHR Locus boundary* PP.H4 

BMI-DKD rs7903146 10 
114722134-

114818754 
0.991  TG-DR rs9379084 6 7231843-7231843 0.980 

BMI-DKD rs76895963 12 4384844-4384844 1.000  TG-DR rs7451008 6 20641336-20727570 0.982 

BMI-DR rs10938397 4 45068929-45193147 0.996  TG-DR rs1708302 7 28142088-28209953 0.967 

BMI-DR rs849135 7 28142088-28209953 0.977  TG-DR rs3802177 8 118184783-118220270 0.957 

BMI-DR rs6602411 10 10255003-10264200 0.993  TG-DR rs10811661 9 22132076-22136489 0.989 

BMI-DR rs7903146 10 
114729482-

114867427 
0.977  TG-DR rs7903146 10 114729482-114818754 0.994 

BMI-DR rs1557765 11 17368013-17421886 0.987  TG-DR rs10765572 11 92668975-92708710 0.957 

BMI-DR rs76895963 12 4384844-4384844 1.000  TG-DR rs76895963 12 4384844-4384844 1.000 

BMI-DR rs12885454 14 29680331-29777492 0.965  TG-DR rs7144011 14 79833494-79945162 0.979 

BMI-DR rs7144011 14 79703248-79945162 0.980  TG-DR rs483082 19 45232161-45524119 0.967 

HDL-C-DKD rs429358 19 45337918-45523583 0.999  WHR-DKD rs429358 19 45392254-45424351 0.999 

HDL-C-DR rs11708067 3 
122936084-

123131254 
0.957  WHR-DR rs11705729 3 185488303-185538006 0.955 

HDL-C-DR rs10938397 4 45164637-45187622 0.996  WHR-DR rs10938397 4 45164637-45187622 0.995 

HDL-C-DR rs1574285 9 4282536-4296430 0.980  WHR-DR rs1513272 7 28142088-28209953 0.986 

HDL-C-DR rs11171739 12 56368078-56584247 0.984  WHR-DR rs7144011 14 79833494-79945162 0.984 

HDL-C-DR rs3184504 12 
111662984-

113218868 
0.995  WHR-DR rs9923544 16 53797908-53848561 0.951 

HDL-C-DR rs7144011 14 79833494-79945162 0.979  WHR-DR rs429358 19 45386467-45428234 1.000 
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HDL-C-DR 
rs15124969

5 
15 38909425-38909425 0.997  

WHRadjBMI-

DKD 
rs9356744 6 20635719-20727570 0.962 

HDL-C-DR rs429358 19 45324138-45623467 1.000  
WHRadjBMI-

DKD 
rs429358 19 45392254-45424351 0.998 

TG-DKD rs7766070 6 20652717-20703952 0.974  
WHRadjBMI-

DR 
rs112256201 3 50599511-50724724 0.959 

TG-DKD rs7903146 10 
114729482-

114817009 
0.996  

WHRadjBMI-

DR 
rs4686696 3 185488303-185538006 0.959 

TG-DKD rs76895963 12 4328521-4384844 1,000  
WHRadjBMI-

DR 
rs1513272 7 28142088-28256240 0.981 

TG-DKD rs695399 22 29889324-30082569 0.951  
WHRadjBMI-

DR 
rs1002226 11 17368013-17421886 0.980 

TG-DR rs28408152 3 
115063640-

115102814 
0.966  

WHRadjBMI-

DR 
rs7310615 12 111826477-112906415 0.961 

TG-DR rs11716713 3 
185488303-

185538006 
0.959  

WHRadjBMI-

DR 
rs429358 19 45388500-45424351 0.999 

BMI-DN rs7903146 10 
114749734-

114817009 
0.970  TG-DN rs7903146 10 114749734-114817009 0.986 

SNP, single nucleotide polymorphism; CHR, chromosome; PP.H4, posterior probability of H4; BMI, Body Mass Index; WHR, waist-to-hip ratio; 

WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; DKD, diabetic kidney disease; 

DR, diabetic retinopathy; DN, diabetic neuropathy. 

*Locus boundary displays the region (start-end) defined by FUMA analysis. 
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Figure 1. Overview of statistical analyses performed in the study. GWAS 

summary statistics on 7 obesity-related traits and diabetic microvascular 

complications were retrieved. First, we investigated the global and local genetic 

correlations among each pair of traits. Subsequently, we used a series of 

comprehensive approaches to identify pleiotropic variants and genes. Finally, the 

potential causality or pleiotropy behind these diseases were further explored. LDSC, 
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Linkage Disequilibrium Score; LAVA, Local Analysis of [co]Variant Association; 

PLACO, Pleiotropic analysis under composite null hypothesis; FUMA, Functional 

mapping and annotation of genetic associations; MAGMA, Multimarker Analysis of 

GenoMic Annotation; SMR, Summary-based Mendelian Randomization; MR, 

Mendelian Randomization; LCV, Latent Causal Variable; GO, Gene Ontology; 

KEGG, Kyoto Encyclopedia of Genes and Genomes; DKD, diabetic kidney disease; 

DR, diabetic retinopathy; DN, diabetic neuropathy; BMI, Body Mass Index; WHR, 

waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; 

HDL-C, high-density lipoprotein cholesterol; TG, triglycerides. 
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Figure 2. Local genetic correlations between obesity-related traits and diabetic 

microvascular complications. Distinct colors are used to represent different traits, 

while the width of the connecting bands (chords) reflects the strength of the 

relationships between genes. A wider band indicates a stronger correlation between 

traits, while a narrower band signifies a weaker correlation. Only correlations meeting 

P < 0.00002 (0.05/2495) are displayed. DKD, diabetic kidney disease; DR, diabetic 

retinopathy; DN, diabetic neuropathy; BMI, Body Mass Index; WHR, waist-to-hip 
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ratio; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-

density lipoprotein cholesterol; TG, triglycerides. 

 

Figure 3. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analysis of genes in the region of the colocalization 

analysis results. (A) Different colors are used to represent the three main categories of 

Gene Ontology terms: Biological Process (BP), Cellular Component (CC), and 

Molecular Function (MF). Each bar in the chart corresponds to enrichment score of the 

GO term within the respective category. (B) The x‐axis represents enrichment score, 

and y‐axis represents different biological pathways. The size of circle represents gene 

count, with larger circles indicating more genes and smaller circles indicating fewer 

genes. Circle colors indicate P-values, with blue representing higher P-values (less 

significant) and red representing lower P-values (more significant). 
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Figure 4. Summary of bi-directional MR analyses between obesity-related traits and 

diabetic microvascular complications. Error bars represent the 95% confidence intervals for 

the associated MR estimates. The primary method for P-value calculation is the IVW method. 

The MR-Egger intercept and Cochrane’s Q test were used to assess pleiotropy and heterogeneity. 

A significant MR-Egger intercept (P < 0.05) suggests pleiotropic effects, while a significant 

Cochrane’s Q test (P < 0.05) indicates heterogeneity. DKD, diabetic kidney disease; DR, 

diabetic retinopathy; DN, diabetic neuropathy; BMI, Body Mass Index; WHR, waist-to-hip ratio; 

WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein 

cholesterol; TG, triglycerides 
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