Biomolecules & Biomedicine

Biomolecules and Biomedicine ISSN: 2831-0896 (Print) | ISSN: 2831-090≯ Journal Impact Factor® (2023): 3.1

CiteScore®(2023):7.4 www.biomolbiomed.com | www.blog.bjbms.org

The BiomolBiomed publishes an "Advanced Online" manuscript format as a free se authors in order to expedite the dissemination of scientific findings to the research comm soon as possible after acceptance following peer review and corresponding modificatior appropriate). An "Advanced Online" manuscript is published online prior to copyediting, for for publication and author proofreading, but is nonetheless fully citable through its Digita Identifier (doi®). Nevertheless, this "Advanced Online" version is NOT the final version manuscript. When the final version of this paper is published within a definitive issue of the with copyediting, full pagination, etc., the new final version will be accessible through the doi and this "Advanced Online" version of the paper will disappear.

REVIEW ARTICLE

Perde-Schrepler et al: Exosomes in the therapy of hearing loss

Mesenchymal stem cell- derived exosomes as cell-

free therapeutics for sensorineural hearing loss

Maria Perde-Schrepler^{1,2}, Ioana Brie², Alma Maniu¹

¹Iuliu Hatieganu, University of Medicine and Pharmacy, Department of Oto-Rhyno-

Laryngology, Cluj-Napoca, Romania;

²Ion Chiricuta, Institute of Oncology, Cluj-Napoca, Romania.

*Correspondence to: Maria Perde-Schrepler: pmariaida@yahoo.com

Guest Editors: Yan Ma, Meijie Tian and Mohd Shah.

DOI: https://doi.org/10.17305/bb.2025.11517

ABSTRACT

Sensorineural hearing loss (SNHL) can result from various factors, including ototoxic drugs (such as aminoglycosides and chemotherapeutic agents), prolonged exposure to intense sound, and autoimmune or genetic disorders. In adult mammals, the loss of sensory cells in the cochlea is irreversible due to their lack of regenerative capacity. Current treatment options include hearing aids for mild to moderate hearing loss, which rely on residual hearing, and cochlear implants for severe cases, which provide limited auditory recovery while leading to the loss of any remaining natural hearing. Stem cell therapies, particularly those involving mesenchymal stem cells (MSCs), are being increasingly explored in regenerative medicine. MSCs are multipotent cells capable of differentiating into mesodermal lineage cells and possess immunomodulatory and regenerative properties, making them potential candidates for SNHL treatment. However, their administration carries risks, including unwanted differentiation, immune system activation, and potential tumorigenic effects. Exosomes, extracellular vesicles in the nanometer size range, are secreted by most eukaryotic cells. These vesicles, which have a double lipid membrane and contain genomic and proteomic material, play a crucial role in intercellular communication. Exosomes derived from MSCs exhibit similar biological functions to their parent cells but with significantly lower risks, as they do not trigger immune responses or pose oncological concerns. This paper aims to review current knowledge on the use of MSCs and MSC-derived exosomes for inner ear sensory cell regeneration and explore their potential for clinical applications.

Keywords: Sensorineural hearing loss; SNHL; exosomes: inner ear; mesenchymal stem cells; MSCs.

INTRODUCTION

Sensorineural hearing loss (SNHL) is the most common type of hearing impairment. [1] The WHO estimates that about 6% of the world's population suffers of some degree of hearing loss. [2] It affects the persons' communication and speech, as well as cognition, thus having an important impact on social life, education, employment and economy. Responsible for hearing is the organ of Corti, located in the scala media- an endolymph- filled cavity inside the cochlea. It contains 15000 inner and outer hair cells arranged specifically: a single row of inner hair cells and three rows of outer hair cells (HC) separated by the supporting cells SC). [3] (Figure 1). The hair cells stereocilia and kinocilia, in contact with the tectorial membrane, transmit the vibrations generated by the sound (transformed into action potential) along the cochlear nerve and auditory pathways to the brain. [4] In the course of embryonic development, between embryonic days E13-E15, the sensorial cells of mammalian cochlea lose their regenerative capacity, their destruction being irreversible after this timepoint, [5-8] As a result, hearing loss in adult mammals is permanent.

To date, there are no perfectly efficient treatment methods. [9] The golden standard for the treatment of SNHL is the cochlear implant (CI), electrodes surgically implanted in the patients' cochlea bypassing the damaged hair cells and stimulating the auditory neurons directly. Although CI significantly improves speech perception as well as quality of life, [10], it has several drawbacks, such as trouble hearing in noisy conditions, difficulties in music listening as well as the possibility of additionally damaging the already affected inner ear structures in the course of the surgical procedure. [11,13]

Glucocorticoids are often used for the treatment of several conditions affecting the inner ear, based on their anti-inflammatory effect but with limited efficiency, while long-term corticosteroid use was frequently associated with serious side- effects. [14-16]

Growth factors such as epidermal growth factor (EGF), bone derived neurotrophic factor (BDNF), or insulin growth factor 1 (IGF1) were used with moderately positive outcomes. [23-25]

Gene therapy: the transfection of *Atoh1*- a transcription factor essential for the formation of neural cells and inner ear HC or *OTOF* (otoferlin) gene to cochlear HC of patients with hereditary mutations in the *OTOF* gene causing SNHL showed some promising results, but there are few successful clinical trials due to important adverse effects, the lack of an ideal formulation and delivery mode to the target cells. [17-22]

Mesenchymal stem cells (MSC) are multipotent cells isolated from a multitude of organs and tissues. They can differentiate into several cell types of mesodermal lineage and have important roles in immunomodulation, seeming appropriate for the treatment of the damaged cochlear sensory epithelium by replacing the lost HC or neurons. They are an excellent source of exosomes (MSC-Exo), cell-derived membrane-surrounded vesicles carrying bioactive molecules (peptides, proteins, or RNA) and delivering them to recipient cells thus having biological functions similar to the parental cells but possessing lower risks. [26]

The discovery of efficient treatment in SNHL resulting in complete restoration of the structure and function of the inner ear should be based on the understanding of the molecular mechanisms involved in the process of losing the regenerative capacity. Important efforts in the recent years tried to identify new modalities to avoid neurosensory deafness, either by preventing the damage to the inner ear or by stimulating the regeneration of neurosensory cells. This review aims to summarize and critically analyze the existing literature regarding cell therapy employing mesenchymal stem cells as well as stem cell-derived exosomes as efficient alternatives for the treatment of SNHL. We propose to identify the positive findings and critically discuss the limitations requiring further research in order to advance to clinical use.

MESENCHYMAL STEM CELLS (MSC) IN SNHL

Stem cells: embryonic stem cells (ESC), induced pluripotent stem cells (iPSC), mesenchymal stem cells, were intensely studied in medical research for the regeneration of damaged tissues/ organs. Stem cells have the ability of self-renewal and differentiation into several somatic cell types. They can be maintained undifferentiated *in vitro* for long periods. ESC and iPSC can differentiate into almost all cell types in the organism, but the use of ESC encounters ethical issues. iPSC, generated through genetic reprogramming of adult cells solve the problem of ethical concerns, but both ESC and iPSC have high genetic and epigenetic instability, tumorigenicity and immunogenicity [27]

Mesenchymal stem cells are multipotent stem cells. They were isolated from almost all organs and tissues. MSC have important differentiating capacity, being able to differentiate into cells belonging to the mesodermal lineage: osteoblasts, chondrocytes, adipocytes, endothelial-cells etc., but also non-mesodermal cells, such as neurone-like cells. [28]

MSC have immunomodulatory properties and regenerative properties and are easy to cultivate and manipulate. They proved to be suitable for the treatment of the damaged cochlear sensory epithelium by replacing the lost HC or neurons in several studies. The ideal situation would be that the transplanted MSC engraft in the inner ear giving rise to the correct and functional cells. Several studies attempted to regenerate the inner ear cells transplanting MSC, using different study designs and they obtained promising results. (Table 1)

In vitro studies. Mouse bone marrow derived MSC (BM-MSC) were differentiated towards HC progenitors with the administration of growth factors: neurotrophin 3 (NT3) and fibroblast growth factor (FGF) for 4-5 days followed by NT3 and brain derived growth factor (BDGF) for 7 days. The treated cells expressed progenitor HC markers: *Oct4, nestin, Otx2,* and *Musashi*, proneural transcription factors *GATA3, NeuroD, Ngn1, Math1, Brn3c,* and *Zic2 but* no mature hair cell genes: *myosin VIIa* and *espin.* Transfection of *Atoh1* led to further differentiation into mature HC (*myosin VIIa* and *espin positive*) and SC (expressing *S100A, p75^{Trk}, claudin 14, connexin 26,* and *Notch1*). [29] Embryonic stem cells (ESC) cultured in serum-free medium with N2 supplement differentiated into inner ear HC progenitors expressing *Math1, Brn3.1* and *Jagged-1, myosin VIIA, espin, parvalbumin 3* and *a9 acetylcholine receptor*, as well as $p27^{Kip1}$. [30]

In vivo studies. Mouse BM-MSC showed great biocompatibility after intratympanic injection to immunocompetent adult mice: no oxidative stress, inflammation or increase of apoptosis occured. [31]

BM-MSC isolated from rats and injected into the lateral semicircular canal of mice with hearing loss induced by 3 nitropropionic acid- a mitochondrial toxin, migrated to and could be visualized at the site of the injury. The recorded auditory brainstem response (ABR) thresholds at 40 kHz improved by 23%. [32] Human umbilical cord MSC transplanted through the subarachnoid cavity of congenitally deaf albino pigs reached the inner ear structures (stria vascularis, the basal membrane and the spiral ganglions) changing ABR waveforms but could be also spotted in the brain, heart, liver, kidney, lung. [33]

Bone marrow stromal cells introduced into the posterior semicircular canal of mice with induced spiral ligament degeneration stimulated the regeneration or maintenance of spiral ligament fibrocytes. It also improved the endocochlear potential with a moderate recovery of ABR threshold shifts via paracrine effects. [34] Following the transplantation of a neural stem cell line (cNSC) into the scala tympani of sound damaged mice and guinea pigs, the stem cells were detected in the cochlea showing markers specific for both neural tissues and inner ear tissues (hair cells, supporting cells). This evolution could be an effect of the cochlear microenvironment up-regulating site- specific proteins initiating the differentiation of these stem cells to neural, glial, HC or SC types. [35] C57BL/6 mice exposed to sound trauma and

treated with human umbilical cord MSC (UC-MSC) showed a significant rescue effect: downregulation of heat shock protein (HSP) family members and cell death effectors and upregulation of antiapoptotic genes (bcl-2), genes involved in immune response, cell repair and developmental processes, etc. Histological analysis of the organ of Corti revealed the preservation of the HC in the middle turn of the cochlea in the transplanted animals. [36] Neural-induced human MSC (NI-hMSC) from bone marrow expressing high levels of neural markers (NeuN) were transplanted into the scala tympani of mice with noise induced hearing loss causing a significant increase of spiral ganglion neurons. NI-hMSC were observed in the perilymphatic space, the organ of Corti, along the cochlear nerve fibers and in the spiral ganglion. [37] Adult rats with noise-induced hearing loss received human embryonic stem cellderived MSCs (ES-MSC) intravenously. They had lower ABR thresholds at 4, 8, and 16 kHz, better preserved spiral ganglion and outer hair cells and lower levels of HSP70 and apoptosis markers. A small number of transplanted ES-MSCs were spotted in the spiral ganglion areas. [38]

Cochlear implantation along with stem cells improved the functionality of the first. [39] CI and BDNF-overexpressing MSC introduced in the same time into guinea pig cochlea reduced spiral ganglions degeneration more efficiently compared to BDNF before the implant. [40] *Clinical studies*. The majority of clinical trials using MSC for hearing loss are phases I, I/II, or II. [41] The administration of a single dose of BM-MSC intravenously to two adult patients with SNHL caused no related toxicities but also no improvement in hearing thresholds. [42] 11 children with acquired hearing loss received a unique dose of UC- MSC intravenously. A reduction of ABR thresholds for 62.5% of patients, improved language development and myelination of white matter on MRI were obtained. [43]

A clinical trial used biohybrid cochlear electrodes coated with autologous bone- marrow derived mononuclear cells in one ear and a standard non-coated implant in the contralateral ear. The results were contradictory: one patient experienced similar speech perception in both ears, one patient had better speech perception with the biohybrid implant while the third experienced reduced speech perception with the biohybrid implant. [44] Although inconclusive, these results represent the first attempts of using stem cells associated with cochlear implants.

Although the above presented studies obtained mostly favorable results such as cochlear cells protection and lowered ABR thresholds, there are serious limitations in comparing their results due to important differences in the study designs- different recipient species, sources of stem cells, delivery site and dosage, differences in the timing of treatments and also in the assessed

endpoints.[45] In order to obtain reliable results, more studies are needed, using standardized methodologies.

Mesenchymal Stem Cells (MSC) therapy seems very attractive for the treatment of many diseases not benefiting of efficient treatment. Although approximately 1515 trials (509 completed) using MSC in different diseases were registered on "<u>www.clinicaltrials.gov</u> (accessed on 21.11.2024)", the results obtained could not justify the introduction of MSC treatments in clinical practice for now. There is still no concluded or ongoing trial of MSC in SNHL yet. [46]

The use of stem cells in the treatment of several diseases remains controversial as it raises several concerns regarding the potential risks: immune rejection, limited cell survival in the new environment, and the risk of malignant transformation. [47,48] The production of a sufficient amount of MSCs for clinical use requires a consistent in vitro expansion, which can lead to spontaneous transformation of the cells and genetic alterations of the cells. [49]

MESENCHYMAL STEM CELLS DERIVED EXOSOMES (MSC-EXO).

MSC were assumed to favor tissue regeneration by migrating to the lesion site, engrafting and differentiating in mature functional cells, but several studies claimed that MSC engraftment is not sufficient to explain the amplitude of the regenerating effect. [50] MSC have alternative ways to stimulate tissue repair by increasing cellular viability, proliferation, differentiation, by extracellular matrix remodeling and by inhibiting apoptosis, fibrosis, inflammation through paracrine signaling via secreted factors: cytokines, chemokines, hormones, extracellular vesicles, etc, forming the so- called "secretome" of MSC. [51] (Figure 2). Even if the transplanted cells could not reach the inner ear, an improvement in hearing and the protection of HC were obtained in a study using hASC (Human Adipose tissue Derived Stem Cells) injected intraperitoneally to BALB/c mice with experimental autoimmune hearing loss. This effect can be attributed to the paracrine effect of hASC: [52]

The composition of the "secretome" is specific for the tissue of origin being a mirror of its physio- pathological state (the "secretome" of adipose derived stem cells is richer compared to the one secreted by BM-MSC derived stem cells). [53,54]

By replacing cell transplantation with the "secretome", the side effects like unwanted differentiation, activation of allogeneic immune response, tumorigenicity etc. could be avoided. [55] Another great advantage of the "secretome" as a biological therapeutic product is that it can be modified to increase some of the desired biological effects, can be obtained in large quantities from commercially available cell lines, provides bioactive factors, etc. [56]

EV came into the researchers' attention in the late 80s. [57] They are cell-derived membranesurrounded vesicles carrying bioactive molecules and delivering them to recipient cells. EV are classified based on their biogenesis mechanism and size in: exosomes (30-150 nm) - endosomeoriginated EV generated in three steps: biogenesis, transport, and release; microvesicles (100-1000 nm) - formed by the outward budding and shedding from the plasma membrane and apoptotic bodies (>1000 nm) - generated in the process of apoptosis. [58,59]

The differentiation between exosomes and microvesicles can be challenging due to their overlapping size ranges, thus separating them based solely on size is difficult. Although exosomes and microvesicles are generated through different cellular processes, there are no specific biomarkers that distinguish exosomes and microvesicles and they have similar proteins and RNAs in their composition making their differentiation based on biomarkers and molecular content difficult. [60] The International Society for Extracellular Vesicles recommends classifying EV into small EV (< 200 nm) and medium/large EV (> 200 nm). The terms "Exosomes" and "small extracellular vesicles" are used interchangeably in the literature, most authors preferring the first. In this review we refer to both without distinguishing them.

Structure, composition, functions of exosomes

Exosomes are produced naturally by almost all eucaryotic cells being transported in the biological fluids. [61,62] Cellular stress and activation signals can modulate their formation process. [63] Exosomes are generated from late endosomes, (Figure 3) by the inward budding of the limited multivesicular body (MVB) membrane and the formation of intraluminal vesicles (ILVs) incorporating certain proteins and cytosolic components. Most ILVs are released from the cell by fusion with the plasma membrane, becoming extracellular vesicles: "exosomes". [64] After their release into the intercellular space, exosomes interact with the target cells being uptaken by endocytosis (e.g. phagocytosis and pinocytosis), receptor-ligand interaction or fusion. [65-67] Their uptake through cell-type specific mechanisms requires the recognition of specific cell surface molecules. [67,68] These receptor–ligand interactions could be exploited for targeted exosome delivery by surface modification with specific ligands against target receptors. [68-72]

Exosomes have a genetic and proteomic cargo with important role in intercellular communication. 80% of the proteins found in EV are common for all exosomes: fusion and transport proteins Rab2, Rab7, flotillin and annexin, tetraspanins (CD9, CD63, CD81, CD82), heat shock proteins, cytoskeleton proteins including actin, myosin, tubulin, and proteins involved in the synthesis of multivesicular bodies (Alix, TSG101). [73,74] The detection of

these common proteins, characteristic for all exosomes, can be used to confirm their isolation. [75] Some of the exosomes content is specific for the tissue of origin: receptors, transcription factors, enzymes, extracellular matrix proteins, lipids, nucleic acids (DNA, mRNA, and miRNA), adhesion molecules (CAM), integrins, MHC class I, II presented on B lymphocytes and dendritic cells, transferrin receptors on the surface of reticulocytes. The composition of the bioactive cargo of the exosomes, specific for the cell of origin as well as for their current state allows the identification of new diagnostic/ prognostic biomarkers. [76]

The exosomes are unable to multiply, as they have no nucleus but biologically active RNA particles are abundant. [77] The most studied are microRNAs, however, other types of non-coding and coding RNAs have been identified in next generation sequencing studies: mitochondrial DNA, piwi interacting RNAs, long non-coding RNAs, ribosomal RNAs, small non-coding RNAs, transfer RNAs, circular RNAs. miRNA molecules can regulate gene expression. The presence of other types of ncRNA such as the circular RNAs, also having active regulatory roles in the recipient cells, demonstrate the gene regulating role of exosomes and their implication in normal development or cancer. [78]

Exosomes have a bilayered lipid membrane consisting of cholesterol, sphyngomielin, ceramides, etc., The lipid content of exosomes depends on the cells' origin and includes cholesterol, phospholipids, phosphatidylethanolamines, polyglycerols and diglycerides. Exosomes_have a higher organization of the lipid content and a higher stability against detergents compared to other EVs. [79,80] Exosome membranes have different lipid composition and distribution compared to the cytoplasmic membrane being involved in the preservation of exosomes shape and stability. They prevent lipolytic or proteolytic degradation in the circulation. [81,82] Membrane lipids serve as signaling mediators by interacting with prostaglandin and phospholipase C and D, their lipidic composition -sphingomyelin, phosphatidylcholine and bis(monoacylglycero)phosphate-BMP) helping in distinguishing the different types of EV: exosomes have higher sphingomyelin concentration while BMP is a component found exclusively in the endosomes. [83,84] Exosome lipid dynamics and protein domains (tetraspanin domains) have an important role in keeping the optimal conformation of immune proteins, such as MHC class II. [85]

ExoCarta is a database (<u>http://www.exocarta.org</u>) that involves all the published and unpublished data about exosome content, being a good resource for information regarding exosome characterization. It has collected 9769 proteins, 3408 mRNAs, 2838 miRNAs, and 1116 lipids that have been identified in exosomes from different types of cells and from multiple organisms. [86]

Exosomes transfer their content to recipient cells having an important contribution in the intercellular communication and tissue repair through paracrine signaling Being an endogen vector, exosomes have low immunogenicity escaping the rethyculoendothelial system (RES) and avoiding phagocytosis. They can cross natural barriers such as blood brain barrier (BBB) or blood labyrinth barrier (BLB) making them good candidates for the transport of certain drugs, genetic material (lncRNA, miRNA), or small molecules, delivering them to otherwise inaccessible tissues such as the brain or the inner ear. [87,88].

The mechanisms by which exosomes exert their actions in the target cells is still not entirely understood but some component molecules have been identified as being responsible for specific effects: miRNA- for example miRNA133b in the case of recovery after ischemic stroke or miRNA-22 for the antiapoptotic effects in cardiomyocites in cardiac ischaemia. [89,90]

Exosome isolation methods

In order to obtain exosomes suitable for clinical use in SNHL, the isolation method has to provide exosomes with the highest yield and purity. The differences in MSC sources, culture conditions and EV isolation methods lead to important differences in the yield and quality of the obtained MSC-EV preparations [129- Witwer]. Several isolation methods have been described, each having its own advantages and disadvantages. [91-103] (Table 2)

To increase the efficiency of exosome isolation, different methods can be combined, like cell media modifications combined with ultrafiltration and size-exclusion chromatography. [104] Choosing between separation methods can be difficult and the decision should be based on the intended use of exosomes in the downstream applications. [105] A sufficient quantity is needed to be isolated to enable exosomes' processing in the tissues, so it is important to obtain high yield of exosomes with a high degree of purity. [106,107]

Ultracentrifugation (UC) is the most frequent method used for obtaining MSC-Exos in clinical trials as well as tangential flow filtration (TFF). [108]

A study published by Kim et al, 2021compared two isolation methods, UC and TFF, the later obtaining a better yield of exosomes isolated from human UCMSC. [109]

For the large-scale production of EV from MSCs ion exchange chromatography (IEX) and ultrafiltration (UF) were used in a study. They obtained EV populations with important antiinflammatory activity in macrophages and T cells, more important for the EV obtained by IEX. [110]

Exosome engineering

The great potential of exosomes in various pathologies has been demonstrated, but there are several limitations when it comes to their clinical application. Naturally produced exosomes are not able to specifically target certain cells or tissues. These limitations could be avoided by the modification of the exosomes and the development of designed (engineered) exosomes. MSC- exosomes can be enriched in fractions of the vesicular "secretome" to obtain new therapeutic agents for different diseases, including those of the inner ear. Exosomes can be loaded with a range of molecules and serve as drug delivery vesicles. Engineered exosomes can be fabricated either pre- isolation, manipulating the parental cells or after exosome isolation using chemical or mechanical methods. [111]

Exosome production can be stimulated preconditioning parental cells by hypoxia, [112-114] heat-shock, [115] transfections, use of biomaterials, etc. [116] Adding exogenous drugs to donor cells can preload exosomes in situ. Preloading strategies, however, are often not an option for many types of cargoes, and so purified exosomes need to be loaded *in vitro*. Loading cargoes (proteins, drugs, bioactive molecules or mRNA) directly into exosomes requires bypassing the barrier represented by the exosome membrane. Loading can be achieved by two methods: passive loading (simple incubation of the exosomes with the therapeutic material) and active loading using physical methods: electroporation, sonication, freeze-thaw, ultracentrifugation, density gradient chemical methods such as membrane permeabilization with saponin, transfection [117,118] (Figure 4)

Exosomes loaded with biopharmaceuticals have improved *in vivo* stability and cell targeting efficiency.

There are several limitations of preconditioning and engineering methods: the chemical or physical pretreatment of MSC cannot limit the nonspecific aggregation of the produced exosomes during treatment [87]; pre-treatments with cytokines or chemicals can exert long-term effects on the physiological properties of MSC [81]; the different engineering methods could not deliver the desired exosomes consistently requiring additional modification steps increasing the difficulty of their industrial production; [118,-121] the size of the drug- too large molecules. [122] To overcome these limitations, intense collaboration of researchers, clinicians as well as authorities is required to make possible the obtaining of high quality, reproducible engineered exosomes for their safe application in translational medicine. [123,124]

MSC DERIVED EXOSOMES FOR TISSUE REGENERATION.

MSC represent an excellent source of exosomes producing a large quantity, compared to other cell lines. In pathologic conditions, the paracrine gradient produced at the periphery of the affected organ attract MSC to promote tissue healing. [125] MSC-Exo alike their cells of origin, have important immunomodulatory properties: inhibition of mitogen activated T cells, induction of anti-inflammatory phenotype in naïve dendritic cells and NK cells; inhibition of B cells, they contribute to the maintenance of tissue homeostasis, have an important role in intercellular communication and can restore the normal function of a tissue through active catalytic enzymes. [126-128]

Exosomes composition is specific to the tissue of origin. Baglio et al, 2015 compared the small RNA profile of exosomes released by adipose tissue- derived MSC (ASC) and bone marrowderived MSC (BM-MSC) using RNAseq analysis. The two types of exosomes contained different tRNA species, which could be relevant for subsequent clinical applications. [129] Comparing the capability to induce de novo adipose cell regeneration of small EV and conditioned medium with equivalent protein concentration, EV performed better, the only advantage of conditioned medium being its availability. [130]

To date, there are 25 ongoing or completed clinical trials employing exosomes, the majority using MSC derived exosomes. [131] Their use as therapeutic agents remains challenging, especially when primary MSC are used as the cellular source of exosomes, due to their heterogeneity. Many factors contribute to this heterogeneity, such as the tissue of origin, the differences in donor profiles, the isolation methods and the culture system. The production process parameters can also affect the exosome products, therefore is a stringent necessity for quality control assays, in order to use them in clinical trials. [132,133] Exosomes released from stem cells potentially exert the same therapeutic and clinical benefits as the cells themselves, being able to recover damaged tissues by stimulating tissue regeneration in myocardial infarction, [134-136] or cisplatin affected renal cells. [137] UC- MSC exosomes had anti-inflammatory effect reducing tumor necrosis factor α and interleukin 1 expression as well as increasing neuronal growth factors. [138]

It is important to keep in mind that the administration of exosomes can also have adverse effects, depending on their origin, underlining the importance of safety testing. [139]

MSC DERIVED EXOSOMES IN SNHL THERAPY

There are few studies using exosomes to treat SNHL but the results are encouraging, the proliferative/ protective factors specific to the MSC exosomes protecting inner ear sensorial

cells from ototoxic injuries and stimulating cellular and tissue regeneration of the inner ear. (Table 3) Human UC-MSC- Exo improved survival and primary neurite growth in rats and reduced HC loss with a partial restoration of hearing, demonstrating neuroprotective and regenerative effects. Gene panel analyses revealed that UC-MSC- Exo modulated the expression levels of many genes promoting tissue remodeling and repair. [140,141] In an experimental study aiming to reduce cochlear implant related inflammation, a subject with CI in one ear received an identical one in the contralateral ear four years later together with intracochlear UC-MSC EV. After 24 months, speech intelligibility improved and the mean impedances in the EV-treated side were significantly higher. [142]

Exosomes enriched in HSP70, produced either by heat-shock preconditioning BM-MSC or by treating exosomes directly reduced cisplatin ototoxicity in cochlear explants, reducing proinflammatory cytokines IL-1, IL-6, and TNF- α and increasing anti-inflammatory cytokine IL-10 in mice [143,144]. Hypoxic- preconditioned BM-MSC secreted exosomes, overexpressing HIF-1, limited HC loss and inhibited oxidative stress caused by cisplatin in mice. [145]

Exosomes isolated from inner ear tissues also showed otoprotective effects: exosomes derived from inner ear stem cells prevented gentamicin-induced ototoxicity, [146] while exosomes derived from cochlear spiral ganglion progenitor cells inhibited inflammation and attenuated ischemia-reperfusion injury- induced cochlear damage. [147]

UC-MSC derived exosomes added to HEI-OC1 cell line and to cochlear explants after Neomycin reduced hair cell loss, modulated autophagy, up-regulated endocytic gene expression, promoted cell survival, decreased oxidative stress and apoptosis. In mice deafened by Neomycin, exosomes reduced hearing loss. [148] BM-MSC-EV increased neurite growth and growth cone development and prevented SGN degeneration after Ouabain. In vivo, they rescued ouabain induced hearing loss protecting SGN degeneration. [149]

By analyzing these results, it is obvious that MSC-Exo, no matter of the tissue of origin or recipient species protected the inner ear tissues against ototoxic agents and promoted regeneration. There are no recorded clinical trials using MSC-Exo to date, as no sufficient and reliable data exist in this area. The most important limitation of the existing studies comes from the heterogeneity of study designs: source of MSC, exosome isolation methods, characterization, used doses of exosomes (expressed as microgram proteins or number of particles), application time-schedule, site of application, incubation time, evaluated endpoints, etc.

CONCLUSION

Technology breakthroughs provide new and promising tools for the management of hearing loss. Inner ear hair cell regeneration, although challenging, has proven possible. Exosomes produced by MSC highlight new options in regenerative medicine. For their future use in SNHL treatment, high quality clinical trials are required. Exosomes have numerous advantages compared to MSC- cell therapy: not being able to replicate, they are not tumorigenic and there are no ethical concerns regarding their use. Exosomes lack immunogenicity and their small size allows the crossing of natural barriers making them good candidates for the transport of certain drugs, genetic material or small molecules. They are stable and can be stored long-term. Exosome engineering can provide exosomes with improved contents and surface markers for more precise delivery and better therapeutic responses. The difficulties in their use are represented by batch-to-batch variations due to the status of donor cells as well as the isolation methods, the need for large quantities and the lack of regulations. In order to step forward to clinical trials exosome production needs the optimization and standardization of each manufacturing step in an automatic operation system that would allow large-scale production and quality control. Another important issue is the assessment of safety: the potential off-target effects and the long- term safety. All these concerns could be resolved through the joined efforts of scientists, biotechnological companies and regulatory authorities.

ACKNOWLEDGMENTS

This work was supported by the "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca,Romania, through the doctoral research project nr.4822/2023. **Conflicts of interest:** Authors declare no conflicts of interest. **Funding:** The authors received no specific funding for this work. **Submitted:** 22 October 2024 **Accepted:** 27 February 2025 **Published online:** 06 March 2025

REFERENCES

- Kathryn Hopkins, Handbook of Clinical Neurology, Chapter 27 Deafness in cochlear and auditory nerve disorders, Editor(s): Michael J. Aminoff, François Boller, Dick F. Swaab, Elsevier, Volume 129, 2015, Pages 479-494, ISSN 0072-9752, ISBN 9780444626301, https://doi.org/10.1016/B978-0-444-62630-1.00027-5.
- https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss; https://www.soundly.com/blog/hearing-loss-statistics.
- White HJ, Helwany M, Biknevicius AR, et al. Anatomy, Head and Neck, Ear Organ of Corti. [Updated 2023 Jan 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538335/
- Lawrence M. Structure and function of the ear and auditory nervous system. Environ Health Perspect. 1982 Apr;44:9-13. doi: 10.1289/ehp.82449.
- Lefebvre PP, Malgrange B, Staecker H, Moonen G, Van De Water TR. Retinoic acid stimulates regeneration of mammalian auditory hair cells after ototoxic damage in vitro. Science 1993; 260/5108: 692–4.
- Perde-Schrepler M, Maniu A, et al. Current Strategies for the Protection, Regeneration, and Replacement of Cochlear Hair Cells. J. Otolaryngol.Head & Neck Surg. 2012, 41(4): 227-239
- Fujioka M, Okano H, Edge AS. Manipulating cell fate in the cochlea: a feasible therapy for hearing loss. Trends Neurosci. 2015 Mar;38(3):139-44. doi: 10.1016/j.tins.2014.12.004.
- Groves AK. The challenge of hair cell regeneration. Exp Biol Med (Maywood). 2010 Apr; 235(4):434-46. doi: 10.1258/ebm.2009.009281.

- Liu F, Han B, Zhou X, Huang S and Huang J. Research progress on the treatment and nursing of sensorineural hearing loss. Front. Neurosci. 2023; 17:1199946. doi: 10.3389/fnins.2023.1199946
- Dietz A, Heinrich A, Törmäkangas T, Iso-Mustajärvi M, Miettinen P, Willberg T, Linder PH. The Effectiveness of Unilateral Cochlear Implantation on Performance-Based and Patient-Reported Outcome Measures in Finnish Recipients. Front. Neurosci., 06 June 2022; Sec. Auditory Cognitive Neuroscience, https://doi.org/10.3389/fnins.2022.786939
- Wilson BS, Dorman MF. Cochlear implants: current designs and future possibilities. J Rehabil Res Dev. 2008; 45(5):695-730. doi: 10.1682/jrrd.2007.10.0173. PMID: 18816422.
- McDermott HJ. Music perception with cochlear implants: a review. Trends Amplif. 2004;8(2):49-82. doi: 10.1177/108471380400800203.
- Bas E, Anwar MR, Van De Water TR. TGF β-1 and WNT Signaling Pathways Collaboration Associated with Cochlear Implantation Trauma-Induced Fibrosis. Anat.Rec., 2020, 303:608-618. <u>https://doi.org/10.1002/ar.24064</u>
- 14. Alles MJRC, der Gaag MA, Stokroos RJ. Intratympanic steroid therapy for inner ear diseases, a review of the literature. *Eur Arch Otorhinolaryngol.* 2006; 263:791–97.
- 15. Cho HS, Lee, K.-Y., Choi, H., Jang, J. H., & Lee, S. H. (2016). Dexamethasone Is One of the Factors Minimizing the Inner Ear Damage from Electrode Insertion in Cochlear Implantation. Audiology and Neurotology, 21(3), 178–186. doi:10.1159/000445099
- 16. Skarzynska MB, Skarzynski PH, Krol B, Kozieł M, Osinska K, Gos E, Skarzynski H. Preservation of Hearing Following Cochlear Implantation Using Different Steroid

Therapy Regimens: A Prospective Clinical Study. Med Sci Monit. 2018 Apr 22;24:2437-2445. doi: 10.12659/msm.906210.

- Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release. 2024 Feb; 366:460-478. doi: 10.1016/j.jconrel.2023.12.050.
- Richardson RT, Atkinson PJ. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin. Biol. Ther. 2015, 15,417–430
- Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZZ.
 Regeneration of Stereocilia of Hair Cells by Forced Atoh1 Expression in the Adult Mammalian Cochlea. PLoS ONE 2012, 7, e46355
- 20. Kuo BR, Baldwin EM, Layman WS, Taketo MM, Zuo J. In Vivo Cochlear Hair Cell Generation and Survival by Coactivation of β-Catenin and Atoh1. J Neurosci. 2015 Jul 29;35(30):10786-98. doi: 10.1523/JNEUROSCI.0967-15.2015.
- 21. Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. *Biomedicines*. 2023; 11(12):3347. https://doi.org/10.3390/biomedicines11123347
- 22. Amariutei AE, Jeng JY, Safieddine S, Marcotti W. Recent advances and future challenges in gene therapy for hearing loss*R*. *Soc. Open Sci.* 2023;10230644<u>http://doi.org/10.1098/rsos.230644</u>
- 23. Lefebvre PP, Malgrange B, Thiry M, Van de Water TR, Moonen G. Epidermal Growth Factor Upregulates Production of Supernumerary Hair Cells in Neonatal Rat Organ of Corti Explants. Acta Otolaryngol, 2000; 120: 142–145. doi.org/10.1080/000164800750000784

- 24. Blakley BW, Seaman M, Alenezi A. Brain-derived nerve growth factor in the cochlea

 a reproducibility study. *Journal of Otolaryngology Head & Neck Surgery*.
 2020;49(1). doi:<u>10.1186/s40463-020-00432-7</u>
- 25. Nakagawa T, Kumakawa K, Usami SI, Hato N, Tabuch, K, Takahashi M, et al. A randomized controlled clinical trial of topical insulin-like growth factor-1 therapy for sudden deafness refractory to systemic corticosteroid treatment. BMC Med. 2014, 12, 1–8
- 26. Nicoara SD, Brie I, Jurj A, Soritau O. The Future of Stem Cells and Their Derivates in the Treatment of Glaucoma. A Critical Point of View. Int. J. Mol. Sci. 2021, 22, 11077. https://doi.org/10.3390/ ijms222011077iPSCs
- 27. Zhang B, Yeo RWY, Lai RC, Sim EEK, Chin KC, Lim SK. Mesenchymal stromal cell exosome–enhanced regulatory T-cell production through an antigen-presenting cell–mediated pathway, Cytotherapy. 20 (2018) 687-696.
- 28. Kassem M. Mesenchymal Stem Cells: Biological Characteristics and Potential Clinical Applications. Cloning and Stem Cells, 2004; 6(4). https://doi.org/10.1089/clo.2004.6.369.
- Jeon SJ, Oshima K, Heller S, Edge AS. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci. 2007 Jan;34(1):59-68. doi: 10.1016/j.mcn.2006.10.003.
- 30. Li H, Roblin G, Liu H, Heller S. From the cover: generation of hair cells by stepwise differentiation of embryonic stem cells. PNAS 2003;100:13495–500, doi:10.1073/pnas.2334503100.
- 31. Eshraghi AA, Ocak E, Zhu A, Mittal J, Davies C, Shahal D, Bulut E, Sinha R, Shah V, Perdomo MM, et al. Biocompatibility of Bone Marrow-Derived Mesenchymal

Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration. *Journal of Clinical Medicine*. 2020; 9(6):1711. https://doi.org/10.3390/jcm9061711

- 32. Kamiya, K.; Fujinami, Y.; Hoya, N.; Okamoto, Y.; Kouike, H.; Komatsuzaki, R.;
 Kusano, R.; Nakagawa, S.;Satoh, H.; Fujii, M.; et al. Mesenchymal Stem Cell
 Transplantation Accelerates Hearing Recovery through the Repair of Injured Cochlear
 Fibrocytes. Am. J. Pathol. 2007, 171, 214–226.
- 33. Ma, Y.; Guo,W.; Yi, H.; Ren, L.; Zhao, L.; Zhang, Y.; Yuan, S.; Liu, R.; Xu, L.; Cong, T.; et al. Transplantation of human umbilical cord mesenchymal stem cells in cochlea to repair sensorineural hearing. Am. J. Transl. Res.2016, 8, 5235–5245.
- 34. Kada S, Hamaguchi K, Ito J, Omori K, Nakagawa T. Bone Marrow Stromal Cells Accelerate Hearing Recovery via Regeneration or Maintenance of Cochlear Fibrocytes in Mouse Spiral Ligaments. Anat Rec (Hoboken). 2020 Mar;303(3):478-486. doi: 10.1002/ar.24063.
- 35. Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Evan Yet al. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hearing Research, 2007, 232(1–2): 29-43. <u>https://doi.org/10.1016/j.heares.2007.06.007</u>.
- 36. Warnecke A, Harre J, Shew M, Mellott AJ, Majewski I, Durisin M, Staecker H. Successful Treatment of Noise-Induced Hearing Loss by Mesenchymal Stromal Cells: An RNAseq Analysis of Protective/Repair Pathways. Front Cell Neurosci. 2021 Nov 23;15:656930. doi: 10.3389/fncel.2021.656930.
- 37. Jang S, Cho HH, Kim SH, Lee KH, Jun JY, Park JS, Jeong HS, Cho YB. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs. *Clinical and Experimental Otorhinolaryngology*, 2015, 8(2): 83-91, <u>http://dx.doi.org/10.3342/ceo.2015.8.2.83</u>

- 38. Kim SY, Lee JE, Kang SH, Lee SM, Jeon J, Lee DR. The Protective Effects of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Noise-Induced Hearing Loss of Rats. *Cells*. 2022; 11(21):3524. https://doi.org/10.3390/cells11213524
- 39. Blebea CM, Ujvary LP, Necula V, Dindelegan MG, Perde-Schrepler M, Stamate MC, Cosgarea M, Maniu AA. Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review. *Medicina*. 2022; 58(6):747. https://doi.org/10.3390/medicina58060747
- 40. Scheper V, Hoffmann A, Gepp MM, Schulz A, Hamm A, Pannier C, Hubka P, Lenarz T, Schwieger J. Stem Cell Based Drug Delivery for Protection of Auditory Neurons in a Guinea Pig Model of Cochlear Implantation. *Front. Cell. Neurosci.* 2019, *13*, 177
- 41. Gopalarethinam J, P. Nair A, Iyer M, Vellingiri B, Subramaniam, MD. Advantages of mesenchymal stem cell over the other stem cells, Acta Histochemica, 2023, 125(4):152041,
 - a. <u>https://doi.org/10.1016/j.acthis.2023.152041</u>.
- 42. Lee HS, Kim WJ, Gong JS, Park KH. Clinical Safety and Efficacy of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Sensorineural Hearing Loss Patients. J Audiol Otol. 2018 Apr;22(2):105-109. doi: 10.7874/jao.2017.00150.
- 43. Baumgartner LS, Moore E, Shook D, Messina S, Day MC, Green J, Nandy R, Seidman M, Baumgartner JE. Safety of Autologous Umbilical cord blood therapy for acquired sensorineural hearing loss in children. Journal of Audiology and Otology, 2018, 22(4), 209–222. 10.7874/jao.2018.00115

- 44. Roemer, A.; Köhl, U.; Majdani, O.; Klöß, S.; Falk, C.; Haumann, S.; Lenarz, T.; Kral,
 A.; Warnecke, A. Biohybrid Cochlear Implants in Human Neurosensory
 Restoration. *Stem Cell Res. Ther.* 2016, 7, 148.
- 45. Chorath K, Willis M, Morton-Gonzaba N, Moreira A. Mesenchymal stem cells for sensorineural hearing loss: a systematic review of preclinical studies. Mol Biol Rep. 2020 Jun;47(6):4723-4736. doi: 10.1007/s11033-020-05460-0.
- 46. Abdelrazik H. Mesenchymal Stem Cells: A Hope or a Hype? Int J Mol Sci. 2023 Aug 25;24(17):13218. doi: 10.3390/ijms241713218.
- 47. Baglio SR , Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in Physiology 2012; 3.
 DOI=10.3389/fphys.2012.00359
- Squillaro T, Peluso G, Galderisi U. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant. 2016;25(5):829-48. doi: 10.3727/096368915X689622.
- 49. Rubio, D., Garcia, S., Paz, M. F., De la Cueva, T., Lopez-Fernandez, L. A., Lloyd, A. C., Garcia-Castro, J., and Bernad, A. (2008). Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE 3:e1398. doi: 10.1371/journal.pone.0001398
- 50. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007;354(3):700–6
- 51. Trzyna, Banas-Ząbczyk A. Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules. 2021 Jun 13;11(6):878. doi: 10.3390/biom11060878.

- 52. Yoo T, Du X, Zhou B. The paracrine effect of mesenchymal human stem cells restored hearing in β-tubulin induced autoimmune sensorineural hearing loss. Hearing Research, 2015, 330, Part A: 57-61, <u>https://doi.org/10.1016/j.heares.2015.07.021</u>
- 53. Noverina R, Widowati W, Ayuningtyas W, Kurniawan D, Afifah E, Laksmitawati DR, et al. Growth factors profile in conditioned medium human adipose tissuederived mesenchymal stem cells (CM-hATMSCs) *Clin. Nutr. Exp.* 2019;24:34–44. doi: 10.1016/j.yclnex.2019.01.002.
- 54. Blaber SP, Webster RA, Hill CJ, Breen EJ, Kuah D, Vesey G, Herbert BR. Analysis of in vitro secretion profiles from adipose-derived cell populations. *J. Transl. Med.* 2012;10:172. doi: 10.1186/1479-5876-10-172.
- 55. Eiró N, Sendon-Lago J, Seoane S, Bermúdez MA, Lamelas ML, Garcia-Caballero T, Schneider J, Perez-Fernandez R, Vizoso FJ. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget. 2014 Nov 15;5(21):10692-708. doi: 10.18632/oncotarget.2530.
- 56. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci. 2017 Aug 25;18(9):1852. doi: 10.3390/ijms18091852
- 57. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.
- 58. Sheta M, Taha EA, Lu Y, Eguchi T. Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology (Basel). 2023 Jan 10;12(1):110. doi: 10.3390/biology12010110.

- 59. He C, Zheng S, Luo Y, Wang B. Exosome Theranostics: Biology and Translational Medicine. Theranostics 2018, 8(1): 237-255. doi: 10.7150/thno.21945
- 60. Kim, H.I., Park, J., Zhu, Y. et al. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med, 2024,56: 836–849.
- 61. Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin,
 Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019
 Jul 15;8(7):727. doi: 10.3390/cells8070727.
- 62. Lasser C, Seyed Alikhani V, Ekström K, Eldh M, Torregrosa Paredes P, Bossios A, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011; 9: 9
- 63. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015; 8: 83
- 64. Zhang Y, Liu Y, Liu H, *et al.* Exosomes: biogenesis, biologic function and clinical potential. *Cell Biosci* 9, 19 (2019). https://doi.org/10.1186/s13578-019-0282-2
- 65. Rezaie, J., Feghhi, M. & Etemadi, T. A review on exosomes application in clinical trials: perspective, questions, and challenges. *Cell Commun Signal* 20, 145 (2022). <u>https://doi.org/10.1186/s12964-022-00959-4</u>
- 66. Tian T, Zhu Y-L, Zhou Y-Y, Liang G-F, Wang Y-Y, Hu F-H. et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. *J Biol Chem.* 2014;289:22258–67
- 67. Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. *Nat Cell Biol.* 2019;21:9–17.

- 68. Vinas JL, Spence M, Gutsol A, Knoll W, Burger D, Zimpelmann J. et al. Receptorligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury. *Sci Rep.* 2018;8:1–12.
- 69. Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, et al. Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications. Small, 2020; 16, 1903916. 10.1002/smll.201903916
- 70. Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.
- Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. *Theranostics* 2021; 11(7):3183-3195. doi:10.7150/thno.52570.
- 72. Thakur A, Ke X, Chen YW, *et al.* The mini player with diverse functions:
 extracellular vesicles in cell biology, disease, and therapeutics. *Protein Cell* 13, 631–654 (2022). https://doi.org/10.1007/s13238-021-00863-6
- 73. Van Niel G, et al. Exosomes: a common pathway for a specialized function. JBiochem. 2006;140(1):13–21
- 74. Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. *Int J Biochem Cell Biol.* 2012;44:1574–84.
- 75. Shao H, Im H, Castro C M, Breakefield X, Weissleder R, Lee H. New Technologies for Analysis of Extracellular Vesicles. *Chem. Rev.* 2018. 118, 4:1917–1950.
 10.1021/acs.chemrev.7b00534
- 76. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23
- 77. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A

Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles, 2018, 7: 1535750

- 78. Abramowicz A, Story MD. The Long and Short of It: The Emerging Roles of Non-Coding RNA in Small Extracellular Vesicles. Cancers (Basel). 2020 Jun 2;12(6):1445. doi: 10.3390/cancers12061445.
- 79. Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T, Orłowski A, et al.
 Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim
 Biophys Acta. 2013 Jul;1831(7):1302-9. doi: 10.1016/j.bbalip.2013.04.011. PMID: 24046871.
- 80. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology, J Lipid Res, 2019,60(1): 9-18 DOI:https://doi.org/10.1194/jlr.R084343
- 81. Nikfarjam S, Rezaie J, Majidi Zolbanin N, Jafari R. Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. JTransl Med, 2020; 18:449. https://doi.org/10.1186/s12967-020-02622-3
- 82. Chu Z, Witte DP, Qi X. Saposin C–LBPA interaction in late-endosomes/lysosomes.
 Experim Cell Res., 2005, 303(2): 300-307, https://doi.org/10.1016/j.yexcr.2004.09.029
- 83. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M. *et al.* Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. *J Lipid Res.* 2010;51:2105-20.
- 84. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011 Aug 31;30(17):3481500. doi: 10.1038/emboj.2011.286
- 85. Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C, Record M. Mast cell- and dendritic cell-derived exosomes

display a specific lipid composition and an unusual membrane organization. Biochem J. 2004 May 15;380(Pt 1):161-71. doi: 10.1042/BJ20031594

- 86. Mathivanan S, et al. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2011;40(D1): D1241–4
- 87. Liao W, Du Y, Zhang CH, Pan FW, Yao Y, Zhang T, Peng Q, Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy.
 Acta. Biomaterialia. 2019; 86: 1–14.
- 88. Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R and Du L Review on Strategies and Technologies for Exosome Isolation and Purification. Front. Bioeng. Biotechnol. 2022; 9: 811971. doi: 10.3389/fbioe.2021.811971
- 89. Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, et al. AKI recovery induced by mesenchymal stromal cell derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol. 2015;26:2349_60.
- 90. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31:2737_46.
- 91. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PST, Star RA,
 Kopp JB. Rapid isolation of urinary exosomal biomarkers using a nanomembrane
 ultrafiltration concentrator. Am. J. Physiol. Renal Physiol. 2007, 292, F1657–F1661.
- 92. Thery C, Clayton A, Amigorena S, Raposo G Monguio- Tortajada, M. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006:3.22.1–3.22.29

- 93. Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell. Mol. Life Sci. 76, 2369–2382 (2019). https://doi.org/10.1007/s00018-019-03071-y
- 94. Stranska R, Gysbrechts L, Wouters J, Vermeersch P, Bloch K, Dierickx D, Andrei G, Snoeck R. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J. Transl. Med. 2018, 16, 1.
- 95. Deregibus MC, Figliolini F, D'Antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G. Charge-based precipitation of extracellular vesicles. Int J Mol Med. 2016;38(5):1359-1366. doi: 10.3892/ijmm.2016.2759.
- 96. Koliha N, Wiencek Y, Heider U, Jüngst C, Kladt N, Krauthäuser S, Johnston ICD, Bosio A, Schauss A, Wild S. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J. Extracell. Vesicles 2016, 5, 581
- 97. Boriachek K, Masud MK, Palma C, Phan HP, Yamauchi Y, Hossain SA, Nguyen NT, Salomon C, Shiddiky MJA. Avoiding Pre-Isolation Step in Exosome Analysis: Direct Isolation and Sensitive Detection of Exosomes Using Gold-Loaded Nanoporous Ferric Oxide Nanozymes. Anal. Chem. 2019, 91, 3827–3834.
- 98. Sharma P, Ludwig S, Muller L, Hong CS, Kirkwood JM, Ferrone S, Whiteside TL. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J. Extracell. Vesicles 2018, 7, 1435138.
- 99. Ghosh A, Davey M, Chute IC, Griffiths SG, Lewis S, Chacko S, Barnett DA, Crapoulet N, Fournier S, Joy AP, et al. Rapid Isolation of Extracellular Vesicles from Cell Culture and Biological Fluids Using a Synthetic Peptide with Specific Affinity for Heat Shock Proteins. PLoS ONE 2014, 9, e110443

- Weng Y, Sui Z, Shan Y, Hu Y, Chen Y, Zhang Y. Effective Isolation of Exosomes by Polyethylene Glycol from Cell Culture Supernatant for In-depth Proteome Profiling. Analyst 2016, 141, 4640–4646.
- 101. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Res.
 Int. 2018, 2018, 8545347
- Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in Exosome Isolation Techniques. Theranostics 2017, 7, 789–804.
- Busatto S, Vilanilam G, Ticer T, Lin W-L, Dickson DW, Shapiro S, Bergese
 P, Wolfram J. Tangential Flow Filtration for Highly Efficient Concentration of
 Extracellular Vesicles from Large Volumes of Fluid. Cells. 2018; 7(12):273.
 https://doi.org/10.3390/cells712027
- 104. Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, Ovstebo R, Costea DE, Galtung HK, Soland TM. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoSOne. 2018 Sep 27;13(9):e0204276. doi: 10.1371/journal.pone.0204276
- 105. Patel GK, Khan MA, Zubair H *et al.* Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. *Sci Rep* 9, 5335 (2019). https://doi.org/10.1038/s41598-019-41800-2
- Park DJ, Standardized Methodologies to Utilize Exosome Treatment as
 Potential Nano Substances in Hearing Loss. J. Otorhinolaryngol. Hear. Balance Med.
 2021; 2, 6

- Lin Y, Anderson JD, Rahnama LMA, Gu SV, Knowlton AA. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol-Heart and Circul Physiol, 2020; 319:6, H1162-H1180. doi:10.1152/ajpheart.00075.2020
- 108. Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)derived exosomes in clinical trials. *Stem Cell Res Ther* 14, 66 (2023). https://doi.org/10.1186/s13287-023-03287-7.
- 109. Kim JY, Rhim WK, Yoo YI, Kim DS, Ko KW, Heo Y, Park CG, Han DK.
 Defined MSC exosome with high yield and purity to improve regenerative activity. J
 Tissue Eng. 2021 Apr 20;12:20417314211008626. doi:

10.1177/20417314211008626.

- Malvicini R, De Lazzari G, Tolomeo AM, Santa-Cruz D, Ullah M, Cirillo C, et al. Influence of the isolation method on characteristics and functional activity of mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy, 2024, 26(2): 57-170. doi.org/10.1016/j.jcyt.2023.11.001.
- Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, et al. Designer
 Exosomes: A New Platform for Biotechnology Therapeutics. BioDrugs. 2020
 Oct;34(5):567-586. doi: 10.1007/s40259-020-00434-x.
- 112. Warnecke A, Staecker H, Rohde E, Gimona M, Giesemann A, Szczepek AJ, et al. Extracellular Vesicles in Inner Ear Therapies—Pathophysiological, Manufacturing, and Clinical Considerations. J. Clin. Med. 2022, 11, 7455. 8 of 18,

https://doi.org/10.3390/jcm11247455

113. Yuan N, Ge Z, Ji W, Li J. Exosomes Secreted from Hypoxia-PreconditionedMesenchymal Stem Cells Prevent Steroid-Induced Osteonecrosis of the Femoral Head

by Promoting Angiogenesis in Rats. Biomed Res Int. 2021 Apr 7;2021:6655225. doi: 10.1155/2021/66552255

- 114. Wang J, Wu H, Peng Y, Zhao Y, Qin Y, Zhang Y, Xiao Z. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J Nanobiotechnology. 2021 Jul 7;19(1):202. doi: 10.1186/s12951-021-00942-0
- 115. Yang T, Li W, Peng A *et al.* Exosomes derived from heat shock preconditioned bone marrow mesenchymal stem cells alleviate cisplatin-induced ototoxicity in mice. J Biol Eng, 2022, 16, 1-9. <u>https://doi.org/10.1186/s13036-022-00304-w</u>
- 116. Li F, Wu J, Li D, Hao L, Yanqun L, Dan Y, *et al.* Engineering stem cells to produce exosomes with enhanced bone regeneration effects: an alternative strategy for gene therapy. *J Nanobiotechnol* 20, 135 (2022). <u>https://doi.org/10.1186/s12951-022-</u> 01347-3
- 117. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. *Nat Biotechnol.* 2011;29:341–5.
- Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D.
 Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta
 Pharmacol Sin. 2017 Jun;38(6):754-763. doi: 10.1038/aps.2017.12.
- Herrmann I K, Wood MJA, Fuhrmann G. Extracellular vesicles as a nextgeneration drug delivery platform. *Nature Nanotechnology* . 2021;16(7):748–759. doi: 10.1038/s41565-021-00931-2.

- 120. Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cellderived exosomes: opportunities and challenges in cell-free therapy. *Stem Cells International*. 2017;2017 doi: 10.1155/2017 6305295.6305295
- 121. Rohde E, Pachler K, Gimona M. Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. *Cytotherapy*. 2019;21(6):581–592. doi: 10.1016/j.jcyt.2018.12.006.
- 122. Cong M., Tan S., Li S., et al. Technology insight: plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers? *Advanced Drug Delivery Reviews*. 2022;182, article 114108 doi: 10.1016/j.addr.2021.114108.
- 123. Chen S, Sun F, Qian H, Xu W, Jiang J. Preconditioning and Engineering Strategies for Improving the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cell- Free Therapy. Stem Cells International, 2022; Article ID 1779346, 18 pages. <u>https://doi.org/10.1155/2022/1779346</u>
- 124. Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015 Dec 31;4:30087. doi: 10.3402/jev.v4.30087.
- 125. Nawamalie T, Gunawardena A, Tariqur M, et.al. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine.
 J Tissue Eng Regen Med. 2019; 13:569–586
- 126. Regmi S, Pathak S, Kim J.O, Yong C.S, Jeong J.H, Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives, Eur. J. Cell. Biol. 2019.
- 127. Yanez-Mo M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. *J Extracell Vesicles*. 2015; 4:27066

31

- 128. Liu T, Zhu Y, Zhao R, Wei XH, Xin XG. Visualization of exosomes from mesenchymal stem cells in vivo by magnetic resonance imaging. Magn. Reson. Imaging. 2020; 68: 75-82
- 129. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, Pegtel DM. Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015 Jul 1;6(1):127. doi: 10.1186/s13287-015-0116-z
- 130. He C, Dai M, Zhou X, Long J, Tian W, Yu M. Comparison of two cell-free therapeutics derived from adipose tissue: small extracellular vesicles versus conditioned medium *Stem Cell Research & Therapy (2022) 13:86* <u>doi.10.1186/s13287-022-02757-8</u>
- 131. Toh WS, Yarani R, El Andaloussi S, Cho BS, Choi C, Corteling R, et al. A report on the International Society for Cell & Gene Therapy 2022 Scientific Signature Series, "Therapeutic advances with native and engineered human extracellular vesicles" Cytotherapy 25 (2023) 810-814. https://doi.org/10.1016/j.jcyt.2023.02.009
- 132. Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications.
 Journal of Extracellular Vesicles. 2019;81609206
- 133. Gimona M, Brizzi MF, Choo ABH, et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. *Cytotherapy*. 2021; 23: 373-380
- Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, Li J, Zhang G, Huang J, Lin Z, Xiong N, Wang T. Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int., 2016; 2016: 7653489. doi: 10.1155/2016/7653489.

- Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Park DJ et al.
 Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. *Stem Cell Res.* 2010, *4*, 214–222
- 136. Tsiapalis D, O'Driscoll L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. *Cells*. 2020; 9:991.
- 137. Wang B, Jia H, Zhang B, et al. Pre-incubation with hu cMSC exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. *Stem Cell Res Ther.* 2017; 8:75
- 138. Shiue SJ, Rau RH Shiue HS, Hung YW, Li ZX, Yang KD, Cheng JK. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury–induced pain in rats. Pain 2019, 160, 210–223
- 139. Chance TC, Rathbone CR, Kamucheka RM, et al. The effects of cell type and culture condition on the procoagulant activity of human mesenchymal stromal cell-derived extracellular vesicles. *J Trauma Acute Care Surg.* 2019; 87: S74-S82
- Warnecke A, Harre J, Staecker H, et.al. Extracellular vesicles from human multipotent stromal cells protect against hearing loss after noise trauma in vivo. Clin. Transl. Med. 2020; 10:e, 262. <u>https://doi.org/10.1002/ctm2.262</u>
- Tsai SCS, Yang KD, Chang KH, Lin FCF, Chou RH, Li MC, et al.Umbilical Cord Mesenchymal Stromal Cell-Derived Exosomes Rescue the Loss of Outer Hair Cells and Repair Cochlear Damage in Cisplatin-Injected Mice. Int. J. Mol. Sci. 2021, 22, 6664. https://doi.org/10.3390/ijms22136664
- 142. Warnecke A, Prenzler N, Harre J, Köhl U, Gärtner L, Lenarz T, et al. Firstin-human intracochlear application of human stromal cell-derived extracellular vesicles. J Extracell Ves. June 2021; <u>10(8)</u> e12094. <u>https://doi.org/10.1002/jev2.12094</u>

33

- 143. Park DJ, Park JE, Lee SH, Eliceiri BP, Choi JS, Seo YJ. Protective effect of MSC-derived exosomes against cisplatin induced apoptosis via heat shock protein 70 in auditory explant model. Nanomedicine Nanotechnol. Biol. Med. 2021, 38, 102447].
- 144. Yang T, Li W, Peng A, et al. Exosomess derived from heat-shock preconditioned bone marrow mesenchymal stem cells alleviate cisplatin-induced ototoxicity in mice. J Biol Eng, 2022, 16: 1-9. http://doi.org.10.1186/s13036-022-00304-w.
- 145. Yang T, Li W, Peng A, Liu J, Wang Q. Exosomes Derived from Bone Marrow-Mesenchymal Stem Cells Attenuates Cisplatin-Induced Ototoxicity in a Mouse Model. J. Clin. Med. 2022, 11, 4743. https://doi.org/10.3390/jcm11164743
- Lai R, Cai C, Wu W, Hu P, Wang Q. Exosomes derived from mouse inner ear stem cells attenuate gentamicin-induced ototoxicity in vitro through the miR-182-5p/FOXO3 axis. J Tissue Eng Regen Med. 2020 Aug;14(8):1149-1156. doi: 10.1002/term.3089.
- 147. Yang, T, Cai C, Peng A, Liu J, Wang Q. Exosomes derived from cochlear spiral ganglion progenitor cells pevent cochlea damage from ischemia-reperfusion injury via inhibiting the inflammatory process. *Cell Tissue Res.* 2021, *386*, 239–247
- 148. Liu H, Kuang H, Wang Y, Bao L, Cao W, Yu L, Qi M, Wang R, Yang X, Ye Q, Ding F, Ren L, Liu S, Ma F, Liu S. MSC-derived exosomes protect auditory hair cells from neomycin-induced damage via autophagy regulation. Biol Res. 2024 Jan 13;57(1):3. doi: 10.1186/s40659-023-00475-w.
- 149. Chen A, Qu J, You Y, Pan J, Scheper V, Lin Y, Tian X, Shu F, Luo Y, Tang J,Zhang H. Intratympanic injection of MSC-derived small extracellular vesicles

34

protects spiral ganglion neurons from degeneration. Biomed Pharmacother. 2024 Oct;179:117392. doi: 10.1016/j.biopha.2024.117392.

TABLES AND FIGURES WITH LEGENDS

Table 1. Studies using mesenchymal stem cells for hearing restoration.

Type of	Study model	Delivery site and	Outcome	Referenc
MSC		mode: dose, timing.		e
In vitro models				
Mouse	Three ES cell	Cell culture media: 10	Differentiation of the	Li, 2003
ESC	lines: R1,	days serum-free	embryonic stem cells into	[27]
	YC5/EYFP	medium with N2	inner ear hair cell	
	and ROSA26.	supplement, EGF (20	progenitors	
		ng/ml ⁻¹) IGF-1 (50		
		ng/ml ⁻¹) and bFGF		
		(10ng/ml^{-1}) for 8 days.		
Mouse	Mouse BM-	•Cell culture media:	Development of hair cell	Jeon,
BM-MSC	MSC cells	NT3 (30ng/ml), FGF	progenitor gene profiles	2007 [26]
		(10 ng/ml) 4-5 days	but not hair cell genes	
		followed by NT3		
		(30ng/ml) and BDNF		
		(10 ng/ml) one week		
		•Atoh1 transfection	Expression of mature hair	
		using lipofectamine	cell markers	
Animal models				
Murine	Sound	Scala tympani-	Significant increase of	Parker,
	damaged mice	1.5x10 ⁶ cells in	satellite cells and Type I	2007 [32]
		perfusion (2.5 µl/ min)	spiral ganglion neurons in	

neural	and guinea	48 h after noise	the stem cell-injected	
stem cell	pigs	exposure	animals. The neural stem	
line			cells differentiated into hair	
			cells, supporting cells and	
			spiral ganglion cells.	
Rat BM-	Mouse with	Lateral semicircular		Varaina
Kat BNI-	Mouse with	Lateral semicircular	MSC observed at the site	Kamiya,
MSC	hearing loss	canal- 1×10^5 cells, 3	of injury	2007 [29]
	induced by a	days after 3NP	ABR thresholds at 40kHz	
	mithocondrial		were improved by 23%	
	toxin (3-			
	nitropropionic	C		
	acid- 3NP)			
Human	Mice with	Scala tympani- 1x10 ⁵	Significant increase of	Jang,
Neural-	neomycin	cells, 7 days after	spiral ganglion neurons	2015 [34]
induced	induced	Neomycin.	(SGN) compared to	
BM-	hearing loss		controls. Transplanted NI-	
MSC (NI-			hMSC expressing NeuN in	
hMSC)			the perilymphatic space,	
			the organ of Corti, along	
			the cochlear nerve fibers	
			and in the spiral ganglion.	
Human	Congenital	Subarachnoid cavity:	UC-MSC found in the stria	Ma,
UC- MSC	deaf albino	$3x10^{5}$ - $1x10^{7}$ cells	vascularis, the basal	2016 [30]
	pigs		membrane and the spiral	

r	ſ	1	1	,,
			ganglions, brain, heart,	
			liver, kidney lung.	
			Changes of ABR	
			waveforms.	
BDNF	Guinea pig	Intracochlear injection	The MSC survived for 4	Scheper,
over-	deafened by	$(2.5 \times 10^5 \text{ cells}) \text{ or}$	weeks in vivo.	2019 [37]
expressin	kanamycin	administration as	The alginate-MSC coating	
g MSC	and furosemid	coating of the cochlear	of the CI significantly	
+CI		implant (5x10 ⁵ cells)	prevented SGN from	
			degeneration; MSC alone	
			had no effect	
Mouse	Immunocomp	Intratympanic;	No oxidative stress	Eshraghi,
BM-MSC	etent adult	1x10 ⁵ cells	generation, no activation of	2020 [28]
	mouse		inflammation and	
			apoptosis	
Mouse	Mouse model	Posterior semicircular	Regeneration or	Kada,
BM-MSC	of cochlear	canal (6x10 ⁵ cells)	maintenance of spiral	2020 [31]
from	fibrocytes		ligament (SL) fibrocytes.	
EGFP-	degeneration		Improvement of	
transgeni	in the spiral		endocochlear potential	
c mice	ligament		(EP)	
			Moderate recovery of ABR	
			threshold shifts	

UC-MSCmice exposedcanal (1x10 ⁶ cells)the MSC treated animals:e, 202to sounddown-regulation of heat[33]traumashock protein and celldeath effectors; up-regulation of bcl-2, genesof the immune responses,cell repair andcell repair anddevelopment.Preservation of hair cells inthe middle turn of thecochlea.the middle turn of the	neck	Warne	Significant rescue effect in	Posterior semicircular	C57BL/6	Human
traumashock protein and cell death effectors; up- regulation of bcl-2, genes of the immune responses, cell repair and development.Image: trauma in the middle turn of the cochlea.Image: trauma in the middle turn of the cochlea.	021	e, 2021		canal (1x10 ⁶ cells)	mice exposed	UC-MSC
death effectors; up- regulation of bcl-2, genes of the immune responses, cell repair and development. Preservation of hair cells in the middle turn of the cochlea.		[33]	down-regulation of heat		to sound	
regulation of bcl-2, genes of the immune responses, cell repair and development. Preservation of hair cells in the middle turn of the cochlea.			shock protein and cell		trauma	
of the immune responses, cell repair and development. Preservation of hair cells in the middle turn of the cochlea.			death effectors; up-			
cell repair and development. Preservation of hair cells in the middle turn of the cochlea.			regulation of bcl-2, genes			
development. Preservation of hair cells in the middle turn of the cochlea.			of the immune responses,			
Preservation of hair cells in the middle turn of the cochlea.			cell repair and			
the middle turn of the cochlea.			development.			
cochlea.			Preservation of hair cells in			
			the middle turn of the			
Human Sprague Introvenous (5x10 ⁵) The ES MSC treated noise Vim S			cochlea.			
Human Sprague- Intravenous (5x10 The ES-WISC realed noise- Kin S	I SY,	Kim S	The ES-MSC treated noise-	Intravenous (5x10 ⁵	Sprague-	Human
ESC- Dawley rats cells) exposed rats showed lower et al,	,	et al,	exposed rats showed lower	cells)	Dawley rats	ESC-
derived with noise- ABR thresholds at 4, 8 and 2022	2 [35]	2022 [3	ABR thresholds at 4, 8 and		with noise-	derived
MSC induced 16 kHz and better			16 kHz and better		induced	MSC
(ES- hearing loss preserved spiral ganglion			preserved spiral ganglion		hearing loss	(ES-
MSC) cells and outer hair cells.			cells and outer hair cells.			MSC)
Reduction of cell death			Reduction of cell death			
markers AIF, PAR, PARP,			markers AIF, PAR, PARP,			
caspase 3 and cleaved			caspase 3 and cleaved			
caspase 3 in the ES-MSC			caspase 3 in the ES-MSC			
treated rats.			treated rats.			
ES-MSCs observed in the			ES-MSCs observed in the			
spiral ganglion area.			spiral ganglion area.			

			Weaker expression of Sry			
			and STEM121 (evidencing			
			human DNA) in the			
			cochlea compared to the			
			lung			
Human stu	dies		Ċ			
Biohybrid	Humans (3	Intracochlear	Contradictory results: one	Roemer		
cochlear	patients)	Dose not reported	patient experienced similar	et al.,		
electrode:			speech perception in both	2016 [41]		
(coated			ears, one patient had better			
with			speech perception with the			
autologou			biohybrid implant;the third			
s BM-			patient showed reduced			
MSC)			speech perception with the			
			biohybrid implant.			
Human	Humans (2	Intravenous	No toxicities related to the	Lee et al.,		
autologou	patients)	$(5x10^7 \text{ cells})$	treatment but also no	2018 [39]		
s bone			improvement in hearing			
BM-MSC						
UC- MSC	Children (11	Intravenous (8 to 30	Reduction of ABR	Baumgart		
	children 6	x10 ⁷ cells/kg body	thresholds for 62.5% of	ner et al.,		
	month to 6	weight)	patients.	2018 [40]		
	years with		Improved language			
			development and			

acquired	myelination of white	
SNHL)	matter on MRI.	

Table 2. Exosome isolation methods

Method	Principle	Advantages	Disadvantages	References
Differential	Sequential	The gold	Laborious and	Thery et al.,
ultracentrifugation	centrifugation at high	standard of	time	2006 [89]
	centrifugation force	exosome	consuming	Monguio-
	separation based on	isolation,	(more than 4h)	Tortajada et
	density and size	suitable for	requires	al., 2019
		large volume	training and an	[90]
		samples,	expensive	
		relatively	equipment: an	
		cheap high	ultracentrifuge.	
		exosome yield		
		and purity		
Size exclusion	Based on size	High purity,	Relatively low	Stranska et
chromatography	differences of	short	yield, can be	al., 2018.
(SEC)	particles. uses the	processing	compensated	[91]
Y	biofluid as a mobile	time (0.3 h)	by large	
	phase and a porous gel		starting	
	filtration polymer as		volumes.	
	the stationary phase			

Ultrafiltration	Based on the	Easy	Loss of	Cheruvanky
	differences in size and	operation,	exosomes on	et al., 2007.
		-		
	molecular weight	does not	filter	[88]
		request	membranes,	
		expensive	low yield	
		equipments,	Ċ	
		high purity.		
		<4h		
Anion exchange	Based on exosome	High purity	Need	Deregibus
chromatography	negative surface	and	additional	et al., 2016.
	charge binding to a	reproducibility	concentration	[92]
	positively charged		of the obtained	
	chromatographic		sample by	
	matrix		ultrafiltration	
Immunoaffinity	Additional step to	Generates	Low yield,	Koliha et
capture	increase exosome	specific	expensive,	al.,
	yield and purity based	exosomes. It	time	2016,[93]
	on the expression of	can isolate	consuming (4-	Boriachek
	surface proteins. Uses	subsets of	20h)	et al., 2019,
	antibodies against	exosomes		[94] Sharma
Y	specific exosome			et al., 2018,
	surface markers (CD9,			[95]; Ghosh
	CD63, and CD81). It			et al., 2014
	can use magnetic			[96]
	beads, nanoparticles			

		Γ	[,
	coated with antibodies			
	against the surface			
	proteins, markers from			
	parent cells, or			
	exosome-binding			
	molecules such as heat			
	shock protein.			
Precipitation with	The low solubility of	High yield,	Low purity	Weng et al.,
PEG based	exosomes in the	simple	(potential	2016 [97]
reagents	reagent leads to the	operation,	contaminants)	Konoshenko
	formation of exosome	suitable for	and specificity	et al., 2018,
	aggregates which are	large samples		[98]
	then precipitated by	Operation		Li et al.,
	low-speed	time 0.3-12h		2017 [99]
	centrifugation.			
Tangential flow	The fluidics flow	High yield	Moderate	Busatto, et
filtration	tangential to a filter		purity.	al, 2018
	membrane.			[100]
	<i>y</i>			

Table 3. Studies using exosomes isolated from MSC for SNHL

Exosome	Recipient	Delivery site and	Outcome	Reference
origin	species	mode: dose,		
		timing		
Human	- BV-2	-1.2x 10 ⁸	-anti-inflammatory	Warnecke,
UC-MSC	Microglial	exosomes/ml in	effect- significant	A, et al,
	cell line	the culture	reduction of IL-1 β gene	2020 [137]
	activated with	medium, 1 hour	expression;	
	lipopolysacch	before LPS	phosphorylation level of	
	aride (LPS)		NF-κβ p65 was	
			significantly diminished.	
	-Primary rat	- UC-MSC-EVs	improved survival,	
	SGN cell	from 1×10^6 ,	increased primary	
	culture	2×10^6 , and	neurite growth dose-	
		4×10^6 cells in the	dependently	
		culture medium		
			5 days after delivery-	
	-One-month	-posterior	protection of the inner	
	old female	semicircular canal	ear cells, partial hearing	
	C57BL/6	72h after noise	restoration: reduced	
	mice exposed	trauma- 1 μl EV	ABR thresholds; rescue	
	to noise	$(2 \times 10^{10} \text{ particles}/$	of the organ of Corti	
		ml)		

		100 1 0		
Human	-Mice with	-100 μL of	- significant reduction of	Tsai, SCS,
UC-MSC	intraperitoneal	UCMSC exosomes	ABR threshold of 8 and	et al, 2021
(Wharton's	Cisplatin	(1.2 µg/µL)	12 kHz; rescue of the	[138]
jelly)	induced	intraperitoneal	lost cochlear hair cells;	
	hearing loss	injection and 10	reversed miRNA profile	
		µL UCMSC	of the cochlear tissue	
		exosomes through		
		the round window		
		niche (RWN).		
Human	Human	Intracochlear,	-no toxicity	Warnecke,
UC-MSC	subject with	simultaneously	-better speech	A, et al,
	bilateral	with cochlear	intelligibility	2021 [139]
	hearing loss	implant-	-significantly higher	
	(Meniere	1×10^8 particles/µl	mean impedances in the	
	disease)		EV-treated side	
Human	Cochlear	- Exosomes	- enrichment of HSP70	Park DJ, et
BM-MSC	explants from	isolated from the	in the secreted exosomes	al, 2021
	ICR mice	culture medium of	-reduced Cisplatin	[140]
	treated with	the co-culture of	induced ototoxicity-	
	Cisplatin and	MSC with	decreased hair cell	
	co-cultured	cochlear explants-	death.	
	with MSC	$2.48 imes 10^{10}$		
		particles/		

]
		mL diluted to 1-,		
		3- or 5-fold; 24h		
		before Cisplatin		
Heat shock	- C57BL/6	-1.2 μg/μL, 1 μL	-exosomes reduced	Yang, T,
treated	mice treated	trans-tympanic 30	Cisplatin ototoxicity-	et al, 2022
mouse BM-	with	minutes after	diminished ABR	[141]
MSC	intraperitoneal	Cisplatin	thresholds; reduced hair	
	Cisplatin		cell loss, reduced	
			inflammation, decreased	
			apoptosis	
Mouse	In vitro: HEI-	-culture medium:	-improved cell viability	Lai, R, et
inner ear	OC1 cells	0, 0.01, 0.1, and	-reduced oxidative stress	al, 2020
stem cells	exposed to	0.3mg/ml same	- increased relative miR-	[143]
	Gentamycin	time as	182-5p expression and	
		Gentamicin	decreased FOXO3	
Mouse	Female	-intracochlear:	- significantly decreased	Yang, T,
cochlear	C57BL/6	0.1 µg, 0.2 µg,	the threshold shift at 8,	et al, 2021
spiral	mice	0.5 µg, and	16, 32 kHZ	[144]
ganglion	ischemia-	1 μg/1 μl, 1 h	- prevented hair cell	
progenitor	reperfusion	before the	damage	
cells	injury (I/R)	ischemia-	- anti-inflammatory	
	model of	reperfusion injury	effect: IL-6, IL-1β,	
	hearing loss	and every 12 h	TNF- α and Cox-2, were	
		after the injury	significantly reduced	

			- inhibition of hair cells	
			apoptosis	
UC-MSC	-Hei-OC1 cell	-30 µg/ml for 24 h	Exosomes reduced	Liu H, et
(Promocell)	line treated	in the cell culture	hearing and hair cell	al, 2024
	with	medium, 24h after	loss caused by	[145]
	Neomycin	Neomycin	neomycin; modulated	
			autophagy in hair cells,	
	-cochlear	-30 µg/ml for 24 h	upregulated endocytic	
	explants	in the cell culture	gene expression;	
	treated with	medium, 24h after	promoted cell survival,	
	Neomycin	Neomycin	decreased oxidative	
			stress and apoptosis in	
			hair cells	
	-C57BL/6	-round window	-exosomes attenuated	-
	mice deafened	niche (RWN):	hearing loss (lower ABR	
	by Neomycin	20 µg in 10 µl	thresholds) and reduced	
		PBS) 2 days after	the loss of Myo 7a-	
		Neomycin. ABR,	positive hair cells in the	
		immune staining	middle and basal regions	
		after 2 weeks	of the cochlear tissues	

Rat BM-	-spiral	-2 μ g/ μ L in cell	-significant increase of	Chen A, et
MSC	ganglion	culture media 48h	neurite growth and	al, 2024
	culture treated	after Ouabain	growth cone	[146]
	with Ouabain		development.	
			-prevent SGN	
			degeneration	
	-SD rats	-200 µg/ml,	-EV rescued ouabain-	
	deafened by	together with	induced hearing loss	
	intratimpanic	20 mM ouabain. 7	rescuing the threshold	
	Ouabain	days after	shifts induced by	
		treatment: ABR,	ouabain;	
		immunostaining	-EV Protected SGN	
			from degeneration	
			-inhibit ouabain-	
			induced apoptosis.	

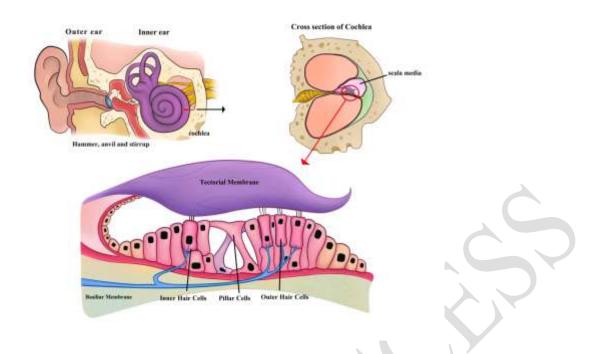


Figure 1. The organ of Corti, located in the scala media- an endolymph- filled cavity inside the cochlea.

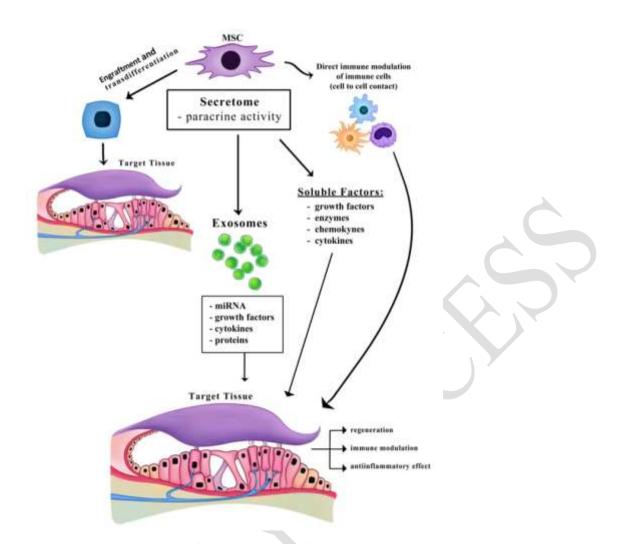
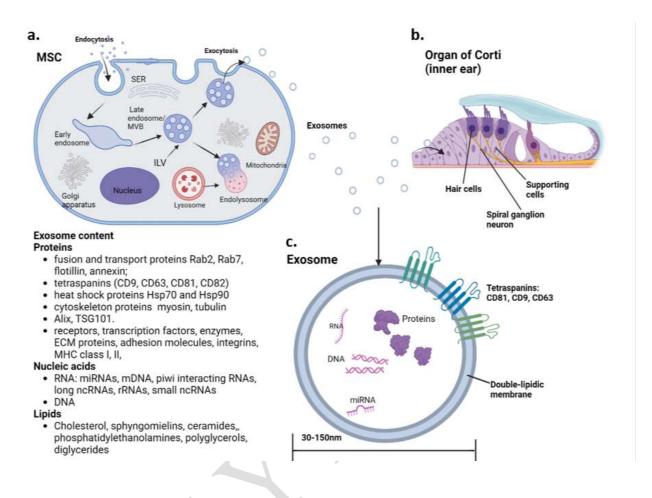



Figure 2. Mesenchymal stem cells and their "secretome"- mechanism of action

Figure 3. The development of exosomes in the mesenchymal stem cells (MSC) in the

endosomal pathway (a). Exosomes' release and uptake by the target cells in the cochlea:

hair cells and supporting cells (b). The structure and main constituents of exosomes (proteins,

nucleic acids, lipids). (c)

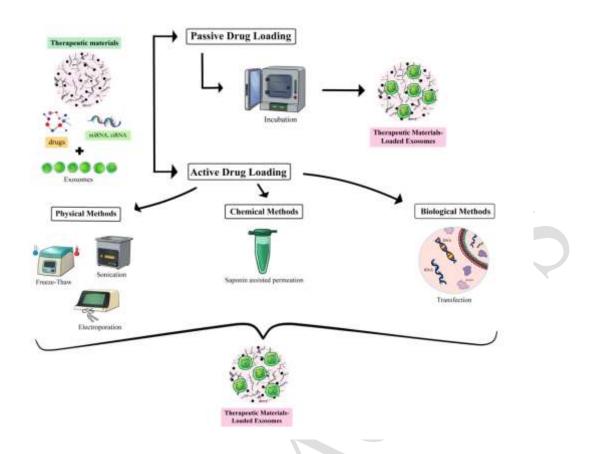


Figure 4. Methods of loading different cargos to target tissues through exosome engineering.