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R E V I E W

Function and mechanism of miRNAs during the process of
Klebsiella pneumoniae infection
Chuhan Zhang1,2, Ge Li 1,2, Safi Ullah3, Liang Liu 1, Huajie Zhao 1, Fan Yang 1, Liwei Guo 4∗ , and Duan Li 1∗

Klebsiella pneumoniae (K. pneumoniae), a Gram-negative bacterium, is a major cause of nosocomial infections and can lead to severe,
widespread infections. The rise of hypervirulent and multidrug-resistant K. pneumoniae presents significant challenges to public health.
Diseases associated with K. pneumoniae, such as pneumonia, lung injury, peritonitis, and sepsis, have garnered increasing attention.
MicroRNAs (miRNAs) are a class of short, endogenously expressed non-coding RNAs that regulate gene expression by inhibiting
translation or promoting mRNA degradation. As key regulators of gene expression, miRNAs play a crucial role in K. pneumoniae
infections by modulating host inflammatory pathways, suppressing inflammasome activity, regulating cytokine secretion, and
facilitating post-translational modifications. Understanding miRNA alterations and their mechanisms during K. pneumoniae infections is
of great significance. This comprehensive review explores the functions and mechanisms of miRNAs in K. pneumoniae-induced lung
injury, peritonitis, and sepsis. By analyzing differential miRNA expression during infection, we aim to provide new insights and potential
directions for future clinical diagnosis and treatment strategies for K. pneumoniae infections.
Keywords: Klebsiella pneumoniae, miRNAs, lung infection, peritonitis, sepsis.

Introduction
Klebsiella pneumoniae (K. pneumoniae) was first described as a
bacterium isolated from the lungs of patients who had died
from pneumonia. It was later found on the mucosal sur-
faces of the oropharynx, nasopharynx, upper respiratory tract,
and gastrointestinal tract in patients [1–3]. K. pneumoniae can
cause various diseases, including pneumonia, sepsis, and uri-
nary tract infections [4]. Virulence factors, such as capsules,
lipopolysaccharides, membranes, and iron-acquisition systems
play a crucial role in the pathogenicity of K. pneumoniae [5].
These factors contribute significantly to adherence, coloniza-
tion, invasion, and disease progression. There are two major
variants of K. pneumoniae: classical K. pneumoniae (cKp) and
hypervirulent K. pneumoniae (hvKp) [6]. In recent years, a
novel classification system has been proposed to distinguish
ultravirulent and supervirulent strains from both cKp and
hvKp [7]. Traditionally, cKp has been the most common form
of K. pneumoniae in Western countries. However, through
the acquisition of virulence factors encoded on plasmids and
mobile genetic elements, it has evolved into a more aggres-
sive pathogen [6]. Furthermore, the emergence and spread
of multidrug-resistant K. pneumoniae (MDR-Kp), including
carbapenem-resistant strains (CR-Kp), pose significant chal-
lenges to antibiotic treatment, leading to severe infections and
high mortality rates [8]. As a result, extensive research has

been conducted to better understand the dissemination of resis-
tance genes between different K. pneumoniae clones, which can
give rise to more pathogenic multidrug-resistant strains [9, 10].
MicroRNAs (miRNAs) are small RNA molecules, approximately
22 nucleotides in length, that regulate gene expression by bind-
ing to complementary regions in the 3′ untranslated region
(3′ UTR) of target mRNAs, leading to either transcriptional
degradation or translation inhibition [11, 12]. miRNAs can mod-
ulate entire cellular signaling pathways, restoring cellular
functions altered by disease [13]. They play a key role in
various biological processes, including developmental timing,
host-pathogen interactions, cell differentiation, proliferation,
apoptosis, and tumorigenesis [14]. Some miRNAs enhance the
host immune response during bacterial infections while also
mitigating inflammation-related damage [15]. Growing evi-
dence suggests that miRNAs play a crucial regulatory role
in lung and other organ diseases caused by K. pneumoniae
infection [16–18], as well as in cancer [19]. This article reviews
the major diseases caused by K. pneumoniae infection and their
associated miRNAs, as illustrated in Figure 1.

miRNAs participating in K. pneumoniae infection
Several studies have reported differential expression of specific
miRNAs in diseases induced by K. pneumoniae infection.
miR-124-3p and exosomal miR-155-5p (detailed mechanism
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Figure 1. Image summary of the profile of miRNAs involved in K. pneumoniae infection. Diseases caused by K. pneumoniae infection and the profile of
associated miRNAs. Red Arabic numbers with circles represent lung diseases ( 1© and 2©), systemic sepsis ( 3©), abdominal peritonitis ( 4©) and epigenetics
( 5©) caused by Klebsiella pneumoniae infection. miRNA: MicroRNA.

in Table 1) regulate the p38 mitogen-activated protein kinase
(p38-MAPK) signaling pathway, thereby enhancing the inflam-
matory response triggered by K. pneumoniae infection [16, 20].
Multiple miRNAs interact to influence Toll-like receptor (TLR)
signaling and contribute to the recognition of K. pneumoniae.
For instance, miR-146a targets key components of the
TLR/interleukin-1 (IL-1) receptor pathway, including IL-1
receptor-associated kinase 1/2 (IRAK1/2) and tumor necro-
sis factor α (TNFα) receptor-associated factor (TRAF) [21].
Additionally, the TLR signaling pathway can regulate miRNA
expression during K. pneumoniae infection. A notable example
is the modulation of let-7 expression via the TLR4-TRAM-TRIF
signaling pathway [22].

A variety of pro-inflammatory factors work together as key
strategies of the host defense against K. pneumoniae infec-
tion. Among these, IL-1β, IL-6, and TNF-α—regulated by miR-
NAs—are well-known pro-inflammatory cytokines that serve
as powerful “weapons” against various pathogens [23]. miR-
181a-5p reduces the levels of IL-1β, IL-18, IL-8, TNF-α, and trans-
forming growth factor-β (TGF-β), demonstrating a significant

anti-inflammatory effect in lung tissue infected with K. pneu-
moniae [17]. In a novel chronic peritonitis model of intraperi-
toneal K. pneumoniae infection, miR-132 is predicted to target
IL-1β, while upregulated miR-21 may decrease IL-6 produc-
tion and lower IL-1β levels [21]. Additionally, miR-142-3p is
associated with the consecutive downregulation of IL-6 and
may contribute to the observed tolerance pattern [21]. The
NACHT, LRR, and PYD domains-containing NLRP3, along with
apoptosis-associated speck-like protein (ASC), may directly or
indirectly influence the inflammatory response induced by
K. pneumoniae infection [24]. NLRP3 has been identified as a tar-
get of miR-181a-5p and miR-223, while ASC levels are modulated
by miR-181a-5p and miR-142 [17, 18]. These findings suggest a
potential strategy for using specific miRNAs to regulate inflam-
mation caused by K. pneumoniae infection. Furthermore, EVs
are membranous structures [25], and the host may form a
specialized EV-miRNA complex [18, 20] to combat K. pneumo-
niae infection [22]. These insights highlight the feasibility and
potential of miRNA-based approaches for diagnosing and treat-
ing K. pneumoniae infections.
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Table 1. Regulation of miRNAs in K. pneumoniae infection

miRNA Model
Differential
expression

Relevant target or involved
signaling pathway Biological function Ref. Year

miR-124 -3p Rat lung tissue down p38 and p38MAPK signali ng
pathway

play anti-inflammatory function,
improve lung injury

[16] 2023

miR-23a A549 down HMGN2 and the integrin α5β1/Rac
pathway

regulate the adhesion of
K. pneumoniae to human lung
epithelial cells

[31] 2016

miR-155 A549 down HMGN2, NFI and the integrin
α5β1/Rac pathway

regulate the adhesion of
K. pneumoniae to human lung
epithelial cells

[31] 2016

exo-miR-155 RAW264. 7 up MSK1 and
MSK1/DUSP1/p38-MAPK pathway

induce macrophage M1 polarization
and inflammatory response, enhance
K. pneumoniae sepsis- associated
acute lung injury

[20] 2023

miR-181
a-5p

BALF, BMDM up NLRP3, ASC and STAT3 signaling
pathway

alleviates the effects of lung damage
induced by K. pneumoniae infection

[17] 2022

MV-miR-
223/142

BALF up NLRP and ASC significant anti-inflammatory effect on
lung

[18] 2019

miR-155 PECs down SOCS1, SHIP1 and TLR signaling
pathway

negatively regulate TLR pathway and
play an anti-inflammatory role

[21] 2013

miR-146a PECs up IRAK 1/2 TRAF 6 and TLR/IL-1
receptor pathway

anti-inflammatory role [21] 2013

miR-142-3p,
-146a, -299
and -200c

PECs up mRNA and protein levels of
HMGB1

modulates host inflammatory response [21] 2013

miR-132 PECs up IL-1β associated with the development of
tolerance to K. pneumoniae

[21] 2013

miR-21,
miR-142-3p

PECs up IL-6 associated with the development of
tolerance to K. pneumoniae

[21] 2013

Let-7 macrophage up TLR4-TR AM-TRIF-IFN-IFNAR1 inhibit SUMOylation and promote
K. pneumoniae infection and
inflammation

[22] 2020

K. pneumonia: Klebsiella pneumonia; miRNA: MicroRNA; SUMO: Small ubiquitin-like modifier; TLR: Toll-like receptor; STAT: Signal transducer and activator
of transcription 3; p38MAPK: p38 mitogen-activated protein kinase; HMGN2: High-mobility group nucleosomal binding domain 2; NFI: Nuclear factor I; IL-1:
Interleukin-1; IRAK1/2: IL-1 receptor-associated kinase 1/2; MSK1: Mitogen- and stress-activated protein kinase-1; DUSP1: Dual-specific phosphatase 1.

Role of miRNA in pulmonary disease caused
by K. pneumoniae infection
miR-155 and miR-23a regulate the adhesion process of
K. pneumoniae
miR-155 is involved in the production of pro-inflammatory
cytokines and is considered a potential biomarker for var-
ious neurological diseases [26]. Additionally, miR-155 regu-
lates the biological functions of immune cells and plays a
key role in the host immune response [27]. Numerous stud-
ies have shown that miR-155 is often overexpressed during
bacterial infections [28–30]. However, one study found that
the expression of miR-155 and miR-23a was downregulated in
pulmonary epithelial cells infected with K. pneumoniae. More-
over, miR-155 expression remained suppressed in RAW264.7
and A549 cells treated with LPS [31]. The same study demon-
strated that high-mobility group nucleosomal binding domain
2 (HMGN2) is a target of miR-155 and miR-23a, playing a

role in the adhesion process of K. pneumoniae [31]. Further
research revealed that the integrin α5β1/Rac1 pathway and actin
polymerization can partially inhibit K. pneumoniae adhesion,
a process in which miR-155 and miR-23a are involved [31].
Overall, HMGN2 functions as an inhibitor, regulating miR-
155-mediated integrin α5β1 activity in A549 cells infected with
K. pneumoniae [31]. Interestingly, the study found that miR-
155 is more dependent on the integrin α5β1/Rac1 pathway than
miR-23a. Additionally, the integrin transcription suppressor
nuclear factor I (NFI) is a target gene of miR-155. miR-155
regulates integrin gene function by inhibiting NFI expression
during K. pneumoniae infection [32, 33]. In summary, the pro-
posed mechanism of miR-155/miR-23a involvement in K. pneu-
moniae infection suggests that host cells actively suppress
miR-155 and miR-23a expression. This suppression releases
HMGN2 and NFI activity, which in turn significantly inhibits
the activation of the integrin α5β1/Rac1 pathway and the
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actin cytoskeletal rearrangement required for K. pneumoniae
adhesion.

miR-124-3p play anti-inflammatory role in lung injury induced
by K. pneumoniae infection
miR-124-3p disorders affect various disease characteristics [26].
Studies have shown that miR-124-3p acts as a protective
agent, contributing to the anti-inflammatory process in the
lungs and helping to alleviate lung injuries [34]. Mechanisti-
cally, miR-124-3p directly targets p65, reducing inflammation
and pulmonary injury in a mouse model of acute respiratory
distress syndrome (ARDS) [34]. As one of the most well-studied
classical inflammatory pathways [35], the p38MAPK path-
way plays a crucial role in inflammation [36]. Studies have
shown that its phosphorylation levels increase significantly in
K. pneumoniae-infected lung cells [37]. Chlorogenic acid, known
for its anti-inflammatory properties [38], has been found
to upregulate miR-124-3p expression, thereby inhibiting p38
expression and inactivating the p38MAPK pathway [16]. This
suggests a potential anti-inflammatory treatment for K. pneu-
moniae-induced diseases through the chlorogenic acid/miR-
124-3p/p38MAPK axis.

miR-155 and MVs-miR-223/142 regulate pulmonary
inflammation induced by K. pneumoniae infection
Macrophage inflammatory responses are known to promote the
expression of miR-155 [39]. Previous studies have shown that
miR-155 plays a crucial role in the development of immune
cells [40–42]. However, in an experiment involving mice
infected with Klebsiella pneumoniae, myeloid miR-155 deficiency
did not affect the myeloid cell population in the alveolar cavity
or blood, nor did it significantly regulate immune cell develop-
ment. Additionally, bacterial counts in lung tissue, blood, liver,
and spleen, as well as IL-6 and TNF levels in bronchoalveolar
lavage fluid (BALF), were measured. The results indicated that
myeloid miR-155 deficiency did not impact immune defense or
inflammatory regulation during K. pneumoniae infection [43]. In
other words, myeloid miR-155 plays a minimal role in K. pneu-
moniae- or LPS-induced pneumonia. However, further research
is needed to fully understand the role of miR-155 in the inflam-
matory response triggered by K. pneumoniae infection. miR-223
and miR-142, known to be specific to hematopoietic tissues [44],
are also key regulators of host inflammatory responses [45–48].
The miR-223/miR-142 pathway plays a crucial role in cell
proliferation, differentiation, and development [49]. EVs are
classified into MVs, exosomes, and apoptotic bodies [50]. A
study analyzing BALF and serum from LPS- or K. pneumo-
niae-infected mice showed that MVs-miR-223/miR-142 secre-
tion was significantly induced, leading to notable pulmonary
anti-inflammatory effects [18]. miRNA 3′-end uridylation facil-
itates the packaging of miR-223/miR-142 into MVs, thereby
enhancing the pulmonary inflammatory response to K. pneumo-
niae infection [18]. As key regulators of host anti-inflammatory
activity, miR-223 and miR-142 inhibit the activation of the
NLRP3 inflammasome in macrophages by suppressing NLRP3
and apoptosis-associated speck-like protein containing a CARD
(ASC), respectively [18]. In summary, MVs-miR-223/miR-142

expression is significantly upregulated in response to LPS and
K. pneumoniae infection (mechanisms detailed in Table 1). This
study highlights the potential of MVs-miR-223/miR-142 as a
promising biomarker for pulmonary inflammation induced by
K. pneumoniae infection.

Exosomal miR-155-5p participated in acute lung injury induced
by K. pneumoniae
As a type of extracellular vesicle, exosomes play a crucial
role in intercellular communication [51]. Numerous studies
have shown that exosomes derived from the serum of septic
mouse models are widely involved in ALI through the reg-
ulation of miRNAs [52]. Macrophages not only act as car-
riers of exosomes but are also influenced by them [53, 54].
Dual-specific phosphatase 1 (DUSP1) plays a key role in
dephosphorylating p38MAPK, thereby negatively regulating
the p38MAPK pathway. Additionally, DUSP1 is positively
regulated by mitogen- and stress-activated protein kinase-1
(MSK1) [55, 56]. To investigate the role of exosomes in ALI, a
mouse model was established using iHvKp. Exosomes were then
isolated from iHvKp-stimulated macrophages (ihvKp-exo).
Notably, the expression of miR-155-5p in ihvKp-exo increased
significantly in a time-dependent manner [20]. Further analy-
sis revealed that exosomal miR-155-5p directly targeted MSK1,
leading to the downregulation of DUSP1. The activation of
the p38MAPK signaling pathway in resting macrophages
highlighted the proinflammatory effects of exosome-derived
miR-155-5p. The systemic non-specific inflammatory response
observed in sepsis is believed to be associated with macrophage
M1 polarization and the excessive secretion of inflammatory
cytokines [57]. miR-155-5p plays a significant role in pro-
moting M1 macrophage polarization and enhancing its proin-
flammatory functions, thereby exacerbating sepsis-associated
ALI caused by K. pneumoniae infection. Conversely, the reduc-
tion of miR-155-5p levels led to decreased M1 polarization
and alleviated inflammatory lung tissue damage [20]. Fur-
ther experiments demonstrated that under iHvKp stimulation,
miR-155-5p participates in the MSK1/DUSP1/p38MAPK signal-
ing pathway, ultimately driving M1 macrophage polarization
and inflammatory responses. In an animal model of pyosep-
tic pneumonia-associated ALI induced by iHvKp, inhibition
of miR-155-5p resulted in improved lung tissue integrity and
increased survival rates (see Table 1 for details). These find-
ings suggest that targeting ihvKp-exo-induced miR-155-5p may
offer a promising molecular approach for the treatment of
iHvKp-associated ALI.

Exosomal miR-181a-5p regulates the lung injury by
K. pneumoniae infection
As a conserved miRNA, miR-181a-5p plays a crucial role in
regulating pathological processes and is considered an impor-
tant regulator of cancer [58]. It has also been linked to
the development and function of NK cells [59] and con-
tributes to the inflammatory response in conditions, such as
pulmonary hypertension and chronic obstructive pulmonary
disease [58, 60]. In a study on mice infected with Kleb-
siella pneumoniae, researchers found that the expression
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of adipose-derived mesenchymal stem cell (ADSC)-derived
exosomal miR-181a-5p was upregulated in both BALF and
BMDMs [17]. Signal transducer and activator of transcrip-
tion 3 (STAT3) has been shown to play a significant role in
K. pneumoniae-related injury [61, 62], and inhibiting STAT3
expression has been found to suppress the progression of
K. pneumoniae infection [63]. Moreover, multiple studies have
demonstrated that STAT3 is involved in activating the NLRP3
inflammasome [64], and its abnormal expression has been
linked to several inflammatory diseases [65]. ADSC-derived
exosomal miR-181a-5p mitigates K. pneumoniae-induced inflam-
mation through a macrophage-related mechanism, reducing
lung levels of IL-1β, IL-18, IL-8, TNF-α, and TGF-β. Fur-
ther mechanistic studies have shown that miR-181a-5p targets
STAT3 at the post-transcriptional level, thereby alleviating
K. pneumoniae-induced lung injury [17] (see Table 1 for detailed
mechanisms). Additionally, ASC has been identified as a key
component of the inflammasome complex, mediating the secre-
tion of inflammatory cytokines, such as IL-1β and IL-18 [66].
Therefore, further research is needed to explore the potential
mechanisms of the miR-181a-5p/STAT3 pathway in K. pneumo-
niae-induced lung injury. These findings provide new insights
into the inflammatory response and may contribute to the
development of novel therapeutic strategies.

The expression of miRNAs in sepsis-induced
by K. pneumoniae infection
Sepsis is a life-threatening condition caused by organ dys-
function resulting from a dysregulated host response to
bacterial infection [67]. K. pneumoniae is one of the most
common pathogens responsible for sepsis [68]. Although the
timely administration of antibiotics has reduced sepsis-related
mortality, the death rate has remained high over the past
few decades [69]. YgiM, originally identified as an intimal
protein in Escherichia coli [70], has been found to localize in
peroxisomes in both yeast and human cells [71]. A homologous
gene (vk055_4013), highly similar to ygiM, has also been
discovered in K. pneumoniae. Research suggests that the loss
of ygiM enhances K. pneumoniae resistance to macrophage
phagocytosis by targeting host cell peroxisomes, thereby
improving the bacterium’s intracellular survival [69]. In a
mouse model of K. pneumoniae-induced sepsis, differentially
expressed miRNAs and their potential target mRNAs were
identified. Among the ygiM-related miRNAs, miR-7108-5p,
miR-4433b-3p, and miR-342-3p were highlighted for their novel
association with sepsis [69]. The specific interaction networks
of ygiM include miR-342-3p/VNN1, miR-7108-5p/CEACAM8,
miR-4433b-3p/CEACAM8, and miR-342-3p/CEACAM8 [69].
These findings provide new insights into the role of YgiM and
miRNAs in K. pneumoniae-induced sepsis. miR-155 is believed to
play a significant regulatory role in the liver during K. pneumo-
niae sepsis. It has been implicated in the formation of neutrophil
extracellular traps—an important immune defense mechanism
against K. pneumoniae invasion [72, 73]. Additionally, myeloid
miR-155 has been shown to exacerbate organ damage in K. pneu-
moniae sepsis [43]. These findings suggest that abnormally

expressed miR-155 could serve as a novel biomarker for predict-
ing mortality and treatment outcomes in severe sepsis [74, 75].
Moreover, they highlight the crucial role of miR-155 in
the host defense response to K. pneumoniae-induced sepsis.
This version corrects grammatical issues, improves sentence
flow, and enhances clarity while maintaining the technical
details.

The expression of miRNAs in peritonitis
induced by K. pneumonia infection
Peritonitis is typically classified into primary, secondary, and
tertiary peritonitis [76]. Primary peritonitis includes sponta-
neous bacterial peritonitis and peritoneal dialysis-associated
infections [77]. Patients with peritonitis remain at high
risk of developing sepsis, which can lead to organ failure
and death [77]. Klebsiella spp. is the second most common
Gram-negative bacterium isolated from ICU peritonitis
patients [78]. In a mouse peritonitis model infected with
K. pneumoniae, eight miRNAs, including miR-21, were upreg-
ulated, while miR-375 was downregulated [79]. Mice that
gradually regained weight following K. pneumoniae infection
were classified into a survival group, whereas those with
continued weight loss were classified into a non-survival (dead)
group. Compared to normal mice, the survival group exhibited
significant dysregulation of miR-203 and miR-672. Among the
five upregulated miRNAs in the non-survival group (miR-21,
miR-183, miR-301a, miR-652, and miR-672), only miR-301a
showed a statistically significant difference. Furthermore,
compared to the survival group, 18 miRNAs were differentially
expressed in the non-survival group, with miR-672 showing
lower expression, while the rest were upregulated [79]. TLR2
and TLR4 are key signaling molecules involved in recognizing
K. pneumoniae, and their expression is upregulated during
infection [80]. Several miRNAs, including miR-155-5p, miR-
142-3p, and miR-23b-5p, are known to target key components
of the TLR signaling pathway [81–83]. These findings suggest
that during K. pneumoniae-induced peritonitis, differentially
expressed miRNAs interact with the TLR pathway, providing
insights into the infection mechanism (detailed in Table 1).
In another peritonitis study [21], mice were pretreated with
either saline or LPS before being infected with K. pneumoniae.
Findings indicated that miR-155 downregulation in the LPS
group was associated with significant suppression of TNF-
α, likely contributing to K. pneumoniae tolerance through the
targeting of SOCS1 and SHIP1 (inhibitors of the TLR pathway).
Additionally, miR-146a was significantly upregulated, targeting
key molecules in the TLR/IL-1 receptor pathway, such as
IRAK1/2 and TNF receptor-associated factor 6 (TRAF6), ulti-
mately inhibiting the inflammatory response [21]. Moreover,
miR-132 and miR-21 were significantly upregulated in the LPS
group and were predicted to target and inhibit IL-1β. Similarly,
miR-142-3p was predicted to target and suppress IL-6, which
may have further contributed to K. pneumoniae tolerance [21]
(detailed in Table). In conclusion, the differential expression
of multiple miRNAs in K. pneumoniae peritonitis modulates key
inflammatory signaling pathways and significantly regulates
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pro-inflammatory cytokine levels, playing a crucial role in the
disease progression.

Reduction of SUMOylation via let-7 enhanced
the process of K. pneumoniae infection
Small ubiquitin-like modifier (SUMO) proteins are a class of
small ubiquitin-like proteins that serve as essential and widely
used reversible post-translational protein modifiers. They play
a key role in regulating infectious processes [84, 85]. Increased
SUMOylation enhances the ability of host cells to combat
K. pneumoniae infection [22]. Let-7 miRNAs, which can be reg-
ulated by type I interferon (IFN I) [86], are known tumor
suppressors that target multiple oncogenes [87]. They also play
a crucial regulatory role in inflammation [88]. Experimen-
tal results indicate that K. pneumoniae-infected macrophages
induce IFN I production, which then signals through IFNAR1 to
activate the expression of let-7 [22]. Upregulated let-7 inhibits
SUMOylation, thereby promoting K. pneumoniae infection and
limiting host inflammation. These findings suggest that K. pneu-
moniae infection triggers macrophages to utilize IFN I-induced
let-7, leading to decreased SUMOylation as a pathogen-driven
mechanism to suppress inflammation [22] (see Table 1 for
detailed mechanisms). Additionally, it is suggested that let-7
plays a significant role in the host’s resistance to K. pneumo-
niae infection. Finally, Table 1 summarizes the functions and
mechanisms of miRNAs in different types of K. pneumoniae
infection.

Conclusion
In recent decades, K. pneumoniae has become a major cause of
both hospital- and community-acquired infections. The emer-
gence of hvKP and MDR-KP has posed a significant threat
to public health [89]. Currently, vaccines utilizing bacterial
components [90] and incorporating advanced computational
methods and artificial intelligence (AI) [91] offer promising
strategies to prevent infections and reduce antimicrobial resis-
tance.At the same time, it is crucial to conduct in-depth research
on the changes in host cell biomolecules following K. pneu-
moniae infection. These biomolecules may help elucidate the
mechanisms of bacterial infection. The 2024 Nobel Prize in
Physiology or Medicine was awarded for research on miRNAs,
which has undoubtedly inspired scientists to further investi-
gate their role in disease occurrence, progression, and treat-
ment. A review of the literature suggests that miRNAs play
a key role in regulating gene expression and are involved in
various infectious disease processes. This article summarizes
the common clinical diseases caused by K. pneumoniae infec-
tions. Based on clinical research, laboratory animal models, and
cellular studies, we have reviewed and preliminarily elucidated
the functions and mechanisms of key miRNAs. Understanding
the changes and effects of miRNAs in K. pneumoniae infections
is of great significance, as it may provide new insights for treat-
ment. However, the specific regulatory mechanisms of miR-
NAs in K. pneumoniae infections remain largely unclear, and
their role in K. pneumoniae-host interactions requires further

exploration. Advancing this research will contribute to the
ongoing fight against bacterial infections.
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