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R E V I E W

The gut microbiota modulates airway inflammation in
allergic asthma through the gut–lung axis-related
immune modulation: A review
Meng Zhang1, Ziwen Qin2, Chuanjun Huang3, Bin Liang3, Xiuqing Zhang4, and Weitao Sun5∗

The human gut microbiota is a vast and complex microbial community. According to statistics, the number of bacteria residing in the
human intestinal tract is approximately ten times that of total human cells, with over 1000 different species. The interaction between
the gut microbiota and various organ tissues plays a crucial role in the pathogenesis of local and systemic diseases, exerting a
significant influence on disease progression. The relationship between the gut microbiota and intestinal diseases, along with its
connection to the pulmonary immune environment and the development of lung diseases, is commonly referred to as the “gut–lung
axis.” The incidence of bronchial asthma is rising globally. With ongoing research on gut microbiota, it is widely believed that intestinal
microorganisms and their metabolic products directly or indirectly participate in the occurrence and development of asthma. Based on
the gut–lung axis, this review examines recent research suggesting that the intestinal microbiota can influence the occurrence and
progression of allergic asthma through the modulation of cytokine immune balance and mucosal integrity. Though the precise immune
pathways or microbial species influencing asthma through the gut–lung axis are still under exploration, summarizing the immune
modulation through the gut–lung axis in allergic asthma may provide insights for the clinical management of the condition.
Keywords: Asthma, gut–lung axis, gut microbiota, airway inflammation.

Introduction
Asthma is a multifaceted condition characterized by reversible
airflow limitation and airway hyperresponsiveness (AHR),
with varying clinical manifestations and types of airway
inflammation. Its onset is influenced by genetic, environmen-
tal, infectious, and nutritional factors, as well as intricate
gene–environment interactions [1]. The current global preva-
lence of asthma exceeds 300 million individuals, with a pro-
jected rise to 400 million by 2025 [2]. Reports indicate that
approximately 250,000 deaths annually can be attributed to
asthma [3]. Despite ongoing research efforts, the precise etiol-
ogy of asthma remains incompletely understood [4].

The gut microbiota comprises approximately 1000 species
of microorganisms, encompassing 6–10 major phyla and con-
sisting of 3000–5000 species, with a total mass ranging from
1–2 kg. The predominant phyla include Bacteroidetes, Firmicutes,
Proteobacteria, and Actinobacteria [5]. The gut microbiota per-
forms various essential functions in the human body, including
organismal development and pathogen resistance [6]. Impor-
tantly, it also influences and maintains homeostasis by mod-
ulating immune responses in both the gastrointestinal system

and distant organs, thereby playing a pivotal role in preserving
overall health and managing diseases [7].

The “gut–lung axis” refers to the intricate interplay, regu-
lation, and mutual influence between the gastrointestinal tract
and respiratory system, mediated by microbial metabolism and
immune function [8]. Immune cells in the intestinal mucosal
tissue constitute a vital component of the body’s immune sys-
tem, accounting for approximately 80% of all immune cells.
During early development, these cells gradually and system-
atically colonize the digestive tract, helping establish a stable
microbial ecosystem that is essential for intestinal health [9].
Early life is a crucial period for the establishment and devel-
opment of the gut microbiota and immune system. Dendritic
cells in human fetuses play a vital role in effective immu-
nity and tolerance by migrating to lymph nodes and respond-
ing to microbial ligands, which helps reduce intrauterine
inflammation [10].

During pregnancy, a woman’s gut and vaginal microbiomes
undergo alterations that facilitate enhanced fetal energy extrac-
tion from maternal blood circulation [11]. Hormonal changes
during pregnancy also influence maternal gut function and
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bacterial composition. Specifically, Vatanen et al. [12] observed
that elevated progesterone levels prolong gastrointestinal tran-
sit time, leading to the entry of maternal metabolites into the
circulatory system from the gut. These metabolites not only
provide nutrients to the fetus but also impact the development
of fetal inflammatory response and immune function. Cells
and metabolites from the maternal gut microbiota can pro-
mote the expression of microbial pattern recognition receptors
and hematopoiesis in the thymus and bone marrow, both of
which play roles in regulating immunity [13]. At birth, bac-
teria transmitted from the mother can accelerate the shift in
infant T helper (Th) cell dominance from Th2 to Th1 and Th17
immune phenotypes, along with mature regulatory immune
mechanisms, thereby reducing the risk of allergic diseases and
asthma in children [14].

Numerous studies have supported the association between
the gut–lung axis and asthma in both humans and mice.
Intrinsic bronchus-associated lymphoid tissue (iBALT) and
gut-associated lymphoid tissue are both components of
mucosa-associated lymphoid tissue, sharing correlated mor-
phology and functionality [15]. In adults, intestinal mucosal
tissues harbor approximately 80% of activated B cells [16]. The
pathogenesis of intestinal flora and asthma is highly intricate.
The intestinal flora is widely recognized as playing a pivotal role
in regulating adaptive immune homeostasis. Disruption of the
balance in intestinal flora contributes to asthma by influencing
T cell development and differentiation, compromising the
integrity of the intestinal epithelium and mucosal homeostasis,
and impacting mast cell homing, among other mechanisms (as
summarized by Gao et al., 2021) [17]. Consequently, lung micro-
bial dysbiosis may play a causative role in the pathogenesis of
asthma. The gut microbiota may affect asthma development
and severity through various factors, including genetics and
environmental influences. While the impact of maternal gut
microbiota on the genetic predisposition to childhood asthma
has been discussed, environmental factors—especially diet—
also play a significant role in affecting gut microbiota diversity
and asthma susceptibility.

Early colonization of the gut microbiota during infancy
is essential for resisting pathogen colonization, facilitating
immune system development and maturation, and supporting
host metabolic processes [18]. Previous studies have shown
an inverse correlation between the relative abundance of
Spirochaetes and the incidence of preschool asthma, while a pos-
itive association has been observed between Clostridium difficile
abundance and the development of this respiratory condition
within the first three months after birth [19]. In breastfed
infants, intervention with the probiotic strain EVC001 has been
shown to upregulate the metabolites indolelactate and Bifi-
dobacterium infantis-derived indole-3-lactic acid (ILA), which
in turn upregulates the immunoregulatory molecule galectin-1.
Galectin-1, a key member of the galactoagglutinin family, has
been found to inhibit Th2 and Th17 cell polarization and induce
interferon-beta (IFN-β) expression in these infants [20]. Addi-
tionally, short-chain fatty acid (SCFA) metabolites, important
components of gut metabolic products, have demonstrated the

ability to mitigate airway inflammation in individuals with
asthma [21].

This article aims to provide an in-depth analysis of the cur-
rent understanding of the relationship between the microbiome
and asthma, focusing on the mechanisms by which the gut–lung
axis influences immune modulation in the pathogenesis and
progression of asthma.

The dysbiosis of gut microbiota and airway microbiota
affects the development of asthma
The influence of the gut microbiome on asthma

The gut microbiome undergoes significant changes during the
first three years of life, characterized by a lower diversity index
and greater interindividual variability [22]. Over time, diver-
sity gradually increases, and the microbiota composition shifts
toward an adult-like profile. For example, a study by Stokholm
et al. found that immature gut microbiome development during
the first year of life is a critical factor that increases asthma
risk. This finding was supported by analyses of microbial com-
munity types. Having older siblings was identified as the only
significant factor influencing membership in the more mature
partitioning around medoids (PAM) cluster 2 at age one year.
Microbial transfer from older siblings may promote the matu-
ration of gut composition and, through appropriate stimulation
of the developing immune system, protect against asthma in
susceptible children [23].

Additionally, a study using 16S rRNA sequencing in a U.S.
birth cohort identified distinct neonatal gut microbiota (NGM)
compositions associated with the relative risk (RR) of childhood
atopy and asthma. The highest-risk group had an increased like-
lihood of developing asthma, with a lower relative abundance
of beneficial bacteria such as Bifidobacterium, Akkermansia,
and Faecalibacterium. This group also showed a higher rela-
tive abundance of fungi, particularly Candida and Rhodotorula,
along with a fecal metabolome enriched in pro-inflammatory
metabolites [24].

According to a TwoSampleMR (TSMR) analysis investigat-
ing the causal relationship between gut microbiota and allergic
diseases, the genus Holdemanella was identified as a potential
risk factor for asthma [25]. In a recent metabolomics-based
study, findings indicated that children with asthma have signif-
icantly decreased levels of amino acids and butyric acid metabo-
lites, as well as a reduced quantity of butyric acid-producing
bacteria, such as Faecalibacterium and Roseburia, while Clostrid-
ium spp. increase. This increase correlates negatively with fecal
amino acids and butyric acid levels. Additionally, a significant
decrease in fecal butyric acid levels in children with asthma
is associated with elevated levels of total serum immunoglob-
ulin E (IgE) and mite-specific IgE [26]. Gut microbiota dys-
biosis is characterized by a shift in the relative abundance of
different microbial taxa, resulting in a decrease in beneficial
probiotic species and an increase in pathogenic bacteria that
modulate SCFAs like propionic acid, thereby promoting Th2
inflammation.
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The influence of the respiratory microbiome on asthma

Microorganisms can establish long-term symbiotic relation-
ships with their hosts, referred to as colonization, without
inducing disease. However, when an imbalance (dysbiosis)
occurs in the microbial community, this disrupted popula-
tion can trigger inflammation or infection [6]. Compared to
healthy individuals, asthma patients exhibit reduced bacte-
rial diversity but an increased microbial abundance in their
respiratory microbiome, both of which are positively asso-
ciated with asthma severity [27]. Bacteria play a significant
role in asthma initiation and exacerbation, with experimental
evidence indicating that bacteria such as Streptococcus pneu-
moniae, Haemophilus influenzae, Moraxella catarrhalis, Chlamy-
dophila pneumoniae, and Mycoplasma pneumoniae can impact
asthma’s occurrence, severity, exacerbation, and treatment
response [28].

However, microbiome composition varies across different
asthma phenotypes. Goleva et al. found discernible differences
in microbial communities between hormone-sensitive and
hormone-resistant asthma in bronchoalveolar lavage fluid
samples at the genus level. Notably, certain genera, such as
Haemophilus influenzae, are expanded in hormone-resistant
asthmatic airways. Pre-exposure of airway macrophages from
individuals with asthma to Haemophilus influenzae uniquely
found in hormone-resistant asthma can activate p38 mitogen-
activated protein kinase (MAPK), enhance interleukin (IL)-
8 production, and impair glucocorticoid response [29].
Microbiome composition also varies between asthmatic and
non-asthmatic patients across different age groups, and is
closely associated with predicted forced expiratory volume in
one second (FEV1) % values [30].

There are overlapping pathological changes between
gastrointestinal and respiratory diseases, and intestinal
inflammation may progress to pulmonary inflammation [31].
This bidirectional disruption is associated with an increased
incidence of respiratory diseases such as asthma [32]. Cor-
respondingly, patients with chronic gastrointestinal diseases
have a higher incidence of lung diseases [33] (Table 1).

The gut microbiota modulates asthma development via the
gut–lung axis
According to the principles of Traditional Chinese Medicine,
a fundamental theory suggests an interrelation between the
lungs and intestines. This gut–lung relationship is supported in
various aspects of modern medicine. Firstly, from an embry-
ological perspective, the lungs and trachea originate from the
foregut, and the respiratory epithelium and glands differenti-
ate from the endoderm [34]. Secondly, the mucosal systems of
the lung and intestine are part of a common mucosal immune
system, with mutual interactions between mucosae [35]. Addi-
tionally, both the lung and intestine have neuroendocrine func-
tions, with secreted neurotransmitters, peptides, and cytokines
potentially facilitating complex interactions between them.
For example, a neurotransmitter called vasoactive intesti-
nal peptide (VIP), secreted by both the lungs and colon, is
widely distributed in the intestinal tract [36]. Despite its high

concentration in the gastrointestinal tract, VIP also has strong
bronchodilatory effects on airways [37].

Moreover, intestinal diseases can lead to significant toxin
and bacterial proliferation in the bloodstream within the
intestinal lumen [38]. Enterogenic endotoxins can accumu-
late and cause lung damage through circulation via blood ves-
sels and lymphatic fluid [39]. In summary, the gut–lung axis
may influence both physiological and pathological processes
through complex immunomodulatory mechanisms, wherein
gut microbiota and its metabolites impact respiratory immune
responses (Figure 1).

Gut microbiota and their metabolites involved in asthma
pathogenesis
Gut microflora directly affect the gut–lung axis

The microflora in the lung and intestine establish a direct con-
nection within the gut–lung axis, enabling bidirectional reg-
ulation of function and state [8]. Lipopolysaccharides (LPS),
a major component of the Gram-negative bacterial cell wall,
elicit innate immune responses by activating Toll-like receptor
(TLR) 4 on epithelial cell membranes and are closely associ-
ated with Th2-mediated allergic reactions in asthma [40]. The
application of LPS to different organs in mice yields varying
outcomes. For instance, when LPS is infused into the airways
of mice, pulmonary dysbiosis occurs, accompanied by a sig-
nificant increase in bacterial populations within 24 h in both
the cecum and blood [41]. Conversely, studies have shown that
mice with depleted intestinal flora due to antibiotic treatment
have reduced resistance to influenza virus and Escherichia coli-
induced pneumonia. However, intestinal administration of LPS
in these mice significantly enhances their resistance, highlight-
ing LPS’s role in augmenting airway immune response [42].

To further investigate the effect of LPS in asthma, a study
using a dust mite-induced asthma mouse model found that
gastrointestinal administration of LPS could inhibit Th2-high
immune response, suggesting a preventive effect on asthma
attacks [43].

Gut microbiota metabolites affect the gut–lung axis

Metabolites generated by the gut microbiota can have sys-
temic effects on immune regulation across various respi-
ratory and gastrointestinal disorders [44]. SCFAs, such as
butyrate, propionate, acetate, and valerate, are primarily pro-
duced through the anaerobic fermentation of dietary fiber
by cecal and colonic microflora and represent key microbial
metabolites [45]. SCFAs act as immunomodulators by sup-
pressing chemotaxis and adhesion of immune cells, inducing
apoptosis in immune cells, and stimulating the secretion of
anti-inflammatory cytokines [46]. Although SCFAs are barely
detectable in lung tissue, they play a crucial role in protecting
against allergic airway diseases [47].

Gut-derived SCFAs can reach the lungs and directly inhibit
histone deacetylases (HDACs) through interaction with G
protein-coupled receptors. Additionally, they enhance the dif-
ferentiation and function of regulatory T (Treg) cells and Th1
cells by stimulating cluster of differentiation (CD) 4+ forkhead
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Table 1. Bacteria related with gut-lung axis microbial dysbiosis and asthma

Bacterial genus Compartment Subjects Microbiota linked to asthma

Bifidobacterium Gastrointestinal Infants and children at risk for asthma Decrease abundance associated with risk for asthma

Clostridium difficile Gastrointestinal Asthmatic and healthy children The colonization at 1 month associated with asthma
risk at the age of 6 years

Lactobacillus
rhamnosus–associated fecal
products

Gastrointestinal Infants at high risk for asthma Promote expansion of T-regulatory cells and IL-10
production in vivo, promoting tolerance for asthma

Faecalibacterium, Roseburia,
Clostridium

Gastrointestinal Preschool age asthmatic and healthy
children at risk for asthma

Decreased abundance of Faecalibacteria, Roseburia
associated with risk for asthma, increased abundance
of Clostridium in asthmatic children

Rothia, Lachnospira,
Veillonella, Faecalibacterium

Gastrointestinal Infants and children at risk for asthma Decreased abundance associated with risk for asthma

Lachnospira, Clostridium
neonatale

Gastrointestinal Preschool age asthmatic and healthy
children

Decreased relative abundance of Lachnospira,
increased relative abundance of Clostridium
neonatale in asthmatic children

Dolosigranulum Nasopharyngeal Infants and children at risk for asthma Prevalence associated with lower risk of viral
respiratory infections and asthma

Corynebacterium Nasopharyngeal Asthmatic and healthy adults Corynebacterium negatively associated with
eosinophilic lung inflammation

Haemophilus Nasopharyngeal,
respiratory

Infants and children at risk for asthma,
and asthmatic and healthy adults

Increased abundance in early life associated with
increased frequency of viral infections and likelihood
of developing persistent wheeze.
Asthmatic status associated with increased
abundance of Proteobacteria, especially Haemophilus

Moraxella Nasopharyngeal,
respiratory

Asthmatic children, children with
respiratory disease, and preschool
children with severe wheeze

Increased abundance in early life associated with
increased frequency of viral infections and likelihood
of developing persistent wheeze

Streptococcus clostridium Nasopharyngeal,
respiratory

Infants and children at risk for asthma,
and children with rhinitis or asthma

Increased abundance in early life associated with
increased frequency of viral infections and likelihood
of developing persistent wheeze

Haemophilus parainfluenza Nasopharyngeal,
respiratory

Asthmatic and healthy adults Increased abundance of Haemophilus parainfluenza;
associated with activation of TLR4, proinflammatory
IL-8, inhibition of corticosteroid-related pathway

Proteobacteria Nasopharyngeal,
respiratory

Adults with severe asthma Increased abundance of Proteobacteria; associated
with Th17-related genes

Proteobacteria with
Haemophilus and Neisseria

Nasopharyngeal,
respiratory

Asthmatic and healthy adults Increased abundance of in asthmatics; general lower
bacterial diversity associated with high Th2-related
lung inflammation

Neisseria Respiratory Asthmatic and healthy adults Increased abundance associated with asthma in
adults

Veillonella Respiratory,
gastrointestinal

Children at risk for Asthma Gastrointestinal decreased abundance

box protein P3 (Foxp3) [48]. In mice with allergic asthma, treat-
ment with propionate and butyrate has been shown to reduce
eosinophilic activity and suppress airway inflammation [49],
suggesting that these SCFAs may promote the production of
macrophages and dendritic progenitor cells, which migrate to
the lungs and mature into CD11b+ dendritic cells, blocking aller-
gen activation of Th2-effector cells [50]. This process regulates
the proliferation of Th2 cells and reduces pro-inflammatory
cytokine production.

In ovalbumin (OVA)-induced asthma mouse models, SCFAs
have been shown to decrease levels of CD4+ T cells and IgE

following vancomycin treatment, which results in alleviated
AHR and reduced airway inflammation [51]. Additionally, mice
fed a high-fiber diet exhibit increased blood SCFA levels and a
lower incidence of allergic airway diseases, potentially due to
SCFAs enhancing the function of CD8+ T cells [52].

The catabolism of cholesterol in the liver produces bile acids,
which are subsequently modified by intestinal bacteria. These
bile acids can influence the composition and structure of the
gut microbiota [53]. In obese asthma patients, bile acids acti-
vate G protein-coupled receptors to enhance cyclic adenosine
monophosphate levels, thereby suppressing the production of
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Figure 1. Lung microbial dysbiosis in asthma: The gut–lung axis. The lung microbiota plays a crucial role in maintaining a healthy immune response.
Microbes in the oral cavity and upper airways shape the microbial communities in the lower airways and lungs. Environmental factors may contribute to lung
dysbiosis, characterized by an increase in bacterial communities in asthma. Lung dysbiosis leads to heightened lung inflammation and immune dysfunction,
initiating allergic asthma (illustrated in red). This inflammatory process may promote specific bacterial communities that contribute to further microbial
dysbiosis.

nuclear factor kappa-B (NF-κB)-mediated pro-inflammatory
factors. This mechanism contributes to bronchial smooth
muscle relaxation and alleviation of asthma symptoms [54]. A
Canadian study found that infants at risk for asthma exhibited
transient dysregulation of the gut microbiome within the first
100 days after birth. This dysregulation was associated with a
specific asthma phenotype at one year of age and correlated with
decreased urinary sulfate bile acid levels [55]. Furthermore,
cesarean-section-born children, characterized by reduced lev-
els of bile acids, tryptophan, and phenylalanine metabolites,
were found to have an increased risk of asthma in school
age [56].

In addition to SCFAs and bile acids, other bacterial metabo-
lites also play roles in immune regulation in asthma. For
example, tryptophan metabolites derived from diet and gut
microbiota act as ligands for the aryl hydrocarbon receptor,
contributing to immune modulation. Notably, allergic asthma
patients exhibit significantly reduced serum levels of trypto-
phan metabolites [57]. In OVA-induced asthma mouse models,
intraperitoneal injection of tryptophan metabolites alleviated
asthma symptoms and reduced OVA-IgE and inflammatory
markers [58]. These effects may be due to the regulation of Th17
and Treg cell differentiation [59]. Other intestinal flora metabo-
lites, such as indole derivatives, polyamines, and deaminoty-
rosine, also have immunomodulatory effects [60–62]; however,
their specific impacts on asthma require further investigation.

Asthma-associated immune response mediated by the gut
microbiome

Contemporary asthma research posits a dynamic correla-
tion between respiratory and intestinal microbiota, suggesting
that the diverse and intricate mechanisms of the intesti-
nal microbiota can modulate adaptive immunity, thereby
influencing asthma-related immune responses and airway
inflammation [8, 27]. These mechanisms involve the modula-
tion of T cell development and differentiation, maintenance of
intestinal epithelial integrity, and mucosal homeostasis, play-
ing a pivotal role in the pathogenesis and progression of asthma.

Intervention in asthma by regulating Th1/Th2 balance

Th2-high inflammation is widely recognized as a crucial mech-
anism underlying allergic asthma [63]. Recent studies suggest
that the gut microbiota may modulate asthma pathogenesis by
regulating the balance between Th1 and Th2 responses [64, 65].
Mice exposed to OVA and raised in conventional housing condi-
tions throughout early life exhibited enhanced intestinal flora
diversity and attenuated airway inflammation associated with
asthma, compared to mice housed under specific pathogen-free
(SPF) conditions. This difference may be linked to the modu-
lation of the Th1/Th2 balance [65]. The intestinal microbiota
and its metabolites can influence intestinal lymphoid tissue,
inducing a Th1 cell-mediated immune response to regulate the
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Th1/Th2 balance, thereby maintaining immune tolerance and
preventing asthma development.

Intervention in asthma by regulating Th17/Treg balance

The Th17/Treg balance is another key mechanism in asthma
pathogenesis [66, 67]. Th17 cells and their cytokines, such as
IL-17, can induce the production of neutrophil chemokines
in the airway epithelium, leading to neutrophil recruit-
ment and inflammatory infiltration. Th17 cytokines can also
trigger goblet cell hyperplasia and affect bronchial smooth
muscle, resulting in increased mucus secretion and airway
narrowing [68, 69]. Colonization by segmented filamentous
bacteria in the murine intestine has been observed to elicit
Th17 cell development, which is associated with increased
expression of pro-inflammatory genes [70]. Treg cells, on the
other hand, suppress excessive Th2 immune responses and
are crucial for maintaining immune homeostasis in allergic
conditions like asthma [71].

The intestinal microbiota plays a key role in regulating
Th17/Treg cell differentiation and homeostasis, either through
direct modulation of receptors and cytokines or through
energy metabolism pathways [72]. Research has primarily
focused on early life stages, where delayed maturation of the
gut microbiota can induce Th17 expression and exacerbate
allergen-driven AHR, worsening asthma severity [73]. Con-
versely, exposure to maternal gut flora and breastfeeding prac-
tices have been shown to promote a balanced Th17/Treg ratio
in offspring, reducing asthma risk [74, 75]. Administration of
bifidobacteria to breastfed infants suppresses Th2 and Th17
cytokines while promoting IFN-β production, thereby reducing
airway inflammation [20].

Another study found that mice given oral Lactobacillus
showed higher levels of Treg cells and Foxp3 mRNA, along
with decreased levels of inflammatory cells like granulocytes,
Th17, and Th2 cells, suggesting that intestinal flora can regulate
the differentiation of naive CD4+ T cells into Th17 cells, thus
maintaining the Th17/Treg balance and modulating the immune
response [76]. Treg cells also influence IgA levels, which play an
anti-infective role by modulating TGF-β production [77]. Stud-
ies have shown that a diverse microbiota is crucial for main-
taining optimal IgA function, as evidenced by higher IgA levels
in SPF mice compared to germ-free mice [78]. Low IgA binding
to intestinal flora has been associated with increased asthma
risk in children [79]. In murine models with intact immune
function, Treg cells stimulate IgA secretion on mucosal sur-
faces, aiding in the expulsion of pathogenic ligands and reduc-
ing systemic inflammation [80]. Conversely, antibiotic-treated
asthmatic mice, with significantly reduced Treg cell accu-
mulation and elevated IgE levels, exhibit increased airway
inflammation [81].

As previously mentioned, Treg function is modulated by
SCFAs produced by the intestinal microbiota. Dietary SCFAs
have been shown to reverse allergic inflammation in the lungs
of mice [51]. Additionally, Clostridium-induced Tregs help main-
tain intestinal immune homeostasis [82], while polysaccharide
A (PSA) can mediate the transformation of CD4+ T cells into
IL-10-producing Foxp3+ Tregs and inhibit the Th17 response

via TLR2 [83]. The intestinal microbiota also expresses outer
membrane proteins that promote Treg development and func-
tionality while inhibiting excessive Th2 cell activation, which is
closely associated with asthma pathology [84]. In summary, the
intestinal microbiota is crucial for maintaining immune home-
ostasis by balancing Th17/Treg responses and thereby reducing
asthma progression.

Intervention in asthma by regulating mucosal immunity

Both the respiratory and digestive tracts have mucosal struc-
tures comprising epithelium and lamina propria, integral com-
ponents of the shared immune mucosal system. The microbial
communities inhabiting the lungs and intestines interact with
host immunity, establishing a personalized micro-ecological
environment [85]. Clostridioides difficile colonization in the
intestine can trigger inflammatory responses, including TLR5
binding and NF-κB activation, which regulate the expression of
pro-inflammatory genes, leading to mucosal inflammation and
epithelial barrier disruption [86]. This highlights the impor-
tance of the intestinal epithelial barrier in immune regulation.

Intestinal flora can produce metabolites that reinforce the
epithelial barrier, using the gut–lung axis as a bridge to support
mucosal immune function and block pathways involved in air-
way remodeling, thereby influencing asthma development [87].
Studies show that the intestinal microbiota can protect mice
from LPS-induced acute lung injury by regulating the TLR4/NF-
κB signaling pathway [88, 89]. SCFAs, as primary metabolites
of the intestinal microbiota, play a pivotal role in preserv-
ing intestinal epithelial integrity and mucosal homeostasis.
Butyrate, an SCFA, promotes the development of the intestinal
barrier by inducing tight junction protein formation through
myosin light chain kinase and Rho kinase activity [90]. Addi-
tionally, gut-derived acetate, another SCFA, has been shown
to protect airway tight junctions against influenza-induced
lung injury, supporting the idea that SCFAs preserve airway
epithelial integrity and mucosal homeostasis [91]. This sug-
gests a novel approach for addressing asthma through gut–lung
mucosal immunity.

Intervention in asthma by regulating other pathways

In addition to the above pathways, the gut microbiota modu-
lates asthma progression through various other mechanisms.
TLRs, a family of transmembrane protein receptors, are cru-
cial for innate immune system activation. Early-life microbial
alterations can impair TLR activation and increase suscepti-
bility to allergic diseases like asthma [92]. In a mouse model,
probiotic-mediated asthma protection required maternal TLR
signaling [93]. Mice exposed to Acinetobacter lwoffii F78 exhib-
ited enhanced resistance to airway allergies in their off-
spring, while impaired TLR function abolished this protective
effect [74]. In TLR-deficient mice, the anti-inflammatory effects
of various gut microbiomes were diminished [94], suggesting
that TLR signaling modulates Treg activation, potentially influ-
encing asthma susceptibility.

The NOD-like receptor thermal protein domain-associated
protein 3 (NLRP3) inflammasome recruits inflammatory
cells, contributing to immune responses in the lungs and
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gastrointestinal tract [95]. The NLRP3 inflammasome is closely
associated with asthma, especially severe asthma, and its
modulation by the gut microbiome may play a key role in
asthma pathogenesis [96]. Vibrio cholerae in the intestine can
activate IL-1β secretion via the NLRP3 inflammasome [97].
In germ-free mice, IL-1 induction is absent [98], while
macrophage-stimulated fecal contents from normal mice elicit
IL-1 production in vitro, highlighting the role of colonized
bacteria in activating the NLRP3 inflammasome and promoting
asthma progression [99].

Invariant natural killer T (iNKT) cells enhance the body’s
responsiveness to allergens, promoting Th1/Th2 imbalance and
asthma attacks [100]. Studies show a close association between
iNKT cell expression and microbiota status. In asthmatic mice
lacking intestinal flora, iNKT cell levels in the lungs are ele-
vated, leading to pronounced airway inflammation. Reintro-
ducing intestinal flora attenuates this response, with notable
expression of chemokine Cxcl16 by iNKT cells, indicating a
correlation among intestinal flora, iNKT cell expression, and
asthma [101].

TGF-β1, a pro-fibrotic factor implicated in airway remod-
eling in asthma, exerts its effects through SMAD proteins,
which mediate most TGF-β1 signaling [102]. Increasing
bifidobacteria and lactobacilli in asthmatic rats has been
shown to alleviate asthma symptoms by downregulating TGF-
β1, SMAD4, and SMAD7 levels, while upregulating SMAD3
expression [103, 104].

In summary, gut microbiota metabolites, such as SCFAs,
regulate T-helper cell balances (Th1/Th2/Th17), influencing
cytokines like IL-17 and TGF-β to promote a healthy immune
response. In the gut–lung axis, migration, interaction, and
signaling of immune cells, as well as direct effects of gut
metabolites, shape the immune environment of the airway,
modulating cytokine production and impacting airway inflam-
mation and AHR in asthma. Understanding the microbiota’s
role in asthma-related inflammatory pathways opens opportu-
nities for novel therapeutic strategies targeting microbial com-
munities to treat and prevent asthma from a fresh perspective.

Asthma prevention and treatment strategy based on the
gut–lung axis theory
Currently, the clinical management of asthma predominantly
relies on glucocorticoids and β2 receptor agonists, which can
alleviate symptoms and slow disease progression within a spe-
cific timeframe. However, achieving long-term curative effects
for asthma remains challenging. Studies have shown signif-
icant differences in the fecal microbiome of asthma patients
with and without inhaled corticosteroid (ICS) treatment, sug-
gesting that ICS use may impact gut dysbiosis and associ-
ated functional pathways [105]. However, it is still unclear
whether ICS-induced changes in gut microbiota directly con-
tribute to asthma severity. In one study, oral antibiotics were
found to relieve allergic asthma in post-weaning mice [106],
a result that contradicts the mainstream view that antibiotic
exposure during early life or pregnancy worsens allergic air-
way inflammation by affecting gut microbiota and lung lipid
metabolism [107, 108]. Although the impact of oral drugs on gut

microbiota and allergic asthma outcomes is not yet fully under-
stood, these findings suggest that gut microbiome interventions
may hold potential in asthma treatment.

The discussion on the gut–lung axis mechanism implies
that modulating the gut microbiota could be a novel thera-
peutic approach for managing pulmonary disorders. The rela-
tionship between allergic asthma and diet-driven microflora
has been extensively studied. From a gut microbiota perspec-
tive, enhancing the diversity of intestinal flora and promoting
SCFA production may offer benefits for asthma prevention and
treatment. Oral agents, including dietary interventions, pro-
biotics, and prebiotics, can be used to modify gut microbiota
diversity and abundance, indirectly influencing respiratory
microbiota [109]. Animal studies have shown that modulating
the gut microbiota can significantly improve airway inflamma-
tion and hyperreactivity in asthma, relieving symptoms and
preventing disease progression [110].

Probiotics

Probiotics are beneficial live microorganisms, primar-
ily derived from healthy human gut flora, known for
their immune-regulating, antioxidant, and antimicrobial
properties [111]. Given the role of gut flora in atopic diseases,
probiotics have emerged as a promising approach for asthma
prevention and treatment. Numerous studies have shown
that both single and combined probiotic strains can influence
the maturation and tolerance of intestinal mucosa, affect
dendritic cell development, and regulate systemic immune
responses, ultimately yielding significant therapeutic effects
on asthma [112].

Lactobacillus, recognized as the most promising probiotic
for asthma prevention and treatment, has garnered exten-
sive validation in animal studies. Administration of Lactobacil-
lus fermentum to asthmatic mice significantly improved lung
inflammation and fibrosis, accompanied by reduced levels of
inflammatory mediators such as IL-4, IL-5, and IL-13 in lung
tissue. Additionally, the expression of TLR2 and TLR4 pro-
teins was notably downregulated [113]. A mixture of Lactobacil-
lus salivarius and Lactobacillus johnsonii showed optimal ther-
apeutic effects in OVA-induced allergic asthma mice, medi-
ated by FOXP3 and Treg induction via gut microbiota and
lung accumulation [114]. Similarly, probiotics administered to
asthma patients increased FOXP3 and Treg levels while sup-
pressing the Th17-mediated inflammatory response, leading to
improved asthma symptoms [115].

Lactobacillus rhamnosus (LGG) has also been shown to reduce
airway resistance in mice and lower levels of IgE, inflammatory
cells, and Th2 cytokines in serum and bronchoalveolar lavage
fluid [116]. Supplementing Lactobacillus rhamnosus before sensi-
tization reduced hyperresponsiveness to acetylcholine in mice,
helping to prevent asthma [117, 118]. In children with asthma
and allergic rhinitis, treatment with Lactobacillus gasseri sig-
nificantly improved allergic symptoms and reduced inflamma-
tory factor expression [119]. In addition to Lactobacillus, other
probiotics such as Bifidobacterium, Streptococcus, and Propioni-
bacterium are commonly used to support overall health [120].
Complex probiotic formulations, such as Bifidobacterium longum
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BB536, Bifidobacterium infantis M-63, and Bifidobacterium breve
M-16V, have shown significant efficacy in alleviating asthma
symptoms [121].

While oral administration is the standard route for probi-
otics, intranasal administration of Lactobacillus paracasei has
shown greater effectiveness in female asthmatic mice [122].
Conversely, nasal administration of Lactobacillus rhamnosus in
male mice appeared less effective [123, 124]. Moreover, there is
no consensus on the optimal dosage of probiotics for asthma
treatment [114]. Therefore, while probiotics show promise
in asthma management, more research is needed to estab-
lish the best administration routes and dosages for effective
treatment [125].

Dietary fiber

Dietary fiber supplementation is a crucial strategy for asthma
prevention by modulating the microbiome. As a multifaceted
dietary component, it exerts preventive effects on asthma by
enhancing the epithelial barrier, promoting Treg cell induc-
tion, mitigating Th2 polarization, and inhibiting excessive
mast cell secretion [126]. Studies in asthmatic mice treated
with dietary fiber have shown reduced eosinophilic airway
inflammation, lower IgE levels, and diminished Th2-related
inflammatory mediators, leading to significant improvement
in asthma symptoms [127]. Furthermore, dietary fiber inter-
ventions have been found to induce prenatal epigenetic gene
imprinting through immune regulation, evidenced by a reduc-
tion in acute allergic reactions in sensitized maternal mouse
offspring exposed to allergens [110]. Research on adult asthma
patients has demonstrated a negative association between
dietary fiber intake and increased airway eosinophils, along-
side improved lung function [128]. These findings suggest that
higher dietary fiber consumption may contribute to a decreased
likelihood of developing asthma within the population, while
also potentially mitigating symptoms such as coughing, wheez-
ing, and sputum production [129].

The approach to asthma prevention through intestinal
microbiota modulation is still in the research stage. Various
single or complex agents involving dietary nutrition, probiotics,
and prebiotics are being explored, though there remain contro-
versies regarding their universality, effectiveness, and appro-
priate modes and dosages. Therefore, further investigation is
necessary.

Conclusion
The gut–lung axis has become a research focus in diseases
such as asthma. With advancements in omics technology,
numerous clinical and animal studies targeting intestinal flora
for asthma treatment continue to emerge, providing new
insights into asthma treatment and prevention beyond conven-
tional approaches. However, further investigation is needed to
deepen our understanding of the underlying mechanisms of the
gut–lung axis, and additional robust experimental evidence is
essential to substantiate hypotheses regarding its pathways.

Firstly, the complexity of the human intestinal ecosys-
tem poses challenges in replicating phenomena observed in

in vitro and in vivo animal studies within clinical contexts,
complicating efforts to unravel the mechanisms governing
lung-intestine interactions. Secondly, limited research exam-
ines how microbiota alterations impact distant organs through
host modulation, underscoring the need for more exploration
into the interplay of mucosal immunity and neuroendocrine
communication between the lung and intestine.

Although the mechanisms underlying the gut–lung axis are
not yet fully understood, it represents a promising avenue for
asthma prevention and treatment. Numerous clinical and ani-
mal studies have targeted the intestinal microbiota to alleviate
asthma symptoms or reduce asthma risk, with encouraging
results that support further investigation into the gut–lung
axis. However, barriers to translating microbiota research
into clinical therapies—such as patient variability, microbial
resilience, and regulatory challenges—must be addressed as
the field progresses. Emerging concepts, such as personalized
medicine based on an individual’s microbiome, could lead to
more tailored approaches to asthma treatment. Additionally,
research areas like synthetic biology and microbiome engi-
neering may offer future-oriented strategies for developing
microbiota-based therapies against asthma.

In summary, harnessing the gut microbiota could pave the
way for groundbreaking advances in asthma research and ther-
apeutic interventions.
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