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R E V I E W

Exploring the therapeutic potential of diterpenes in
gastric cancer: Mechanisms, efficacy, and clinical
prospects
Chenhui Ma 1#, Lei Gao 1#, Kewei Song 1, Baohong Gu 1, Bofang Wang 1, Weigao Pu 1, and Hao Chen 2,3∗

Gastric cancer (GC) remains a significant global health challenge, particularly prevalent in East Asia. Despite advancements in various
treatment modalities, the prognosis for patients, especially those in advanced stages, remains poor, highlighting the need for
innovative therapeutic approaches. This review explores the promising potential of diterpenes, naturally occurring compounds with
robust anticancer properties, derived from diverse sources, such as plants, marine organisms, and fungi. Diterpenes have shown the
ability to influence reactive oxygen species (ROS) generation, ferroptosis, and autophagy, positioning them as attractive candidates for
novel cancer therapies. This review delves into the mechanisms of action of diterpenes and their clinical implications for the treatment
of GC. Additionally, it addresses the challenges in translating these compounds from preclinical studies to clinical applications,
emphasizing the need for further research to enhance their therapeutic profiles and minimize potential side effects. The discussion
underscores the importance of diterpenes in future anticancer strategies, particularly in the fight against GC.
Keywords: Natural products, diterpenes, gastric cancer (GC), mechanisms, clinical prospects.

Introduction
As one of the most common malignancies worldwide, gastric
cancer (GC) ranks as the fifth most prevalent cancer and the
third leading cause of cancer-related deaths globally [1, 2]. The
development of GC is often linked to various factors, includ-
ing dietary habits, Helicobacter pylori infection, smoking, and
genetic predispositions [3, 4]. Current treatment options, such
as surgical resection [5], chemotherapy [6], targeted therapy,
and immunotherapy [7], often yield limited success. This is
primarily because most patients are diagnosed at an advanced
stage, and these treatments frequently come with significant
side effects. Thus, developing new therapeutic strategies and
identifying novel treatment targets are critical for improving
survival rates and the overall well-being of GC patients [8].

In the quest for new treatment strategies for GC, natural
products have gained attention due to their unique biolog-
ical activities [9]. Among them, diterpenoids have attracted
widespread interest for their anticancer potential [10, 11]. Diter-
penoids are derived from diverse sources, including plants,
marine organisms, and insects, and possess unique chemi-
cal structures and biological activities [12–14]. They primarily
inhibit tumor growth and metastasis by inducing apoptosis—
programmed cell death in cancer cells [15, 16]. Additionally,
they impede cell proliferation by disrupting the cell cycle and

preventing cancer cell division [17, 18]. Moreover, diterpenoids
can block key signaling pathways critical to cancer cell survival
and metastasis [19], and disrupting these pathways effectively
halts GC progression. Another key aspect of their anticancer
activity is their ability to modulate the tumor microenviron-
ment. Diterpenoids can modify the tumor surroundings, mak-
ing them less conducive to cancer growth and more vulnerable
to immune system attacks [20].

Preclinical studies, including both in vitro experiments
and in vivo animal models, have been extensively used to
assess the anticancer effects of diterpenoids [21]. These stud-
ies have provided substantial evidence supporting the efficacy
of diterpenoids in inhibiting cancer cell growth and inducing
apoptosis. In vitro experiments have shown the ability of these
compounds to directly target and kill cancer cells, while in vivo
studies have demonstrated their potential to reduce tumor size
and inhibit metastasis in animal models. Additionally, pharma-
cokinetic and metabolic studies have been conducted to under-
stand the absorption, distribution, metabolism, and excretion
(ADME) of diterpenoids, which is critical for their potential
clinical application [22].

The aim of this review is to provide a comprehensive discus-
sion of the therapeutic potential of diterpenes in GC, exploring
both their biochemical mechanisms and their implications for
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future clinical applications. The following sections will delve
into the specific types of diterpenes, their mechanisms of action,
and the current state of research in this promising field of
oncology.

Overview of GC
Global epidemiology and classification of GC

GC remains the third leading cause of cancer-related deaths
worldwide, with the highest incidence rates observed in East
Asia, particularly in China [2, 3, 23]. This regional disparity
is often attributed to dietary habits, environmental factors,
and the prevalence of Helicobacter pylori infection [4]. Despite
advances in diagnosis and treatment, the absolute number of
cases continues to be significant, largely due to the aging pop-
ulation and persistent cases in regions with underdeveloped
healthcare infrastructures [4, 24, 25].

The classification of GC is critical for guiding both diag-
nosis and treatment and for understanding patient progno-
sis. GCs are primarily categorized into adenocarcinomatous
and nonadenocarcinomatous types. The most prevalent type,
adenocarcinoma [26], is further subdivided based on the Bor-
rmann classification into four types, with type IV being char-
acterized by the worst prognosis due to its diffuse infiltrative
growth patterns. The Lauren classification system further dif-
ferentiates adenocarcinomas into intestinal, diffuse, and mixed
types—each with distinct pathological features linked to spe-
cific risk factors and disease progression patterns [27]. The
intestinal type is often associated with chronic inflammation
resulting from dietary factors and H. pylori infection, whereas
the diffuse type is more influenced by genetic factors [28].

The Lauren classification [29] categorizes adenocarci-
nomas into intestinal, diffuse, and mixed types, thereby
elucidating their histological characteristics and associ-
ated risk factors [30]. Intestinal adenocarcinomas are well-
differentiated, form gland-like structures, and are frequently
associated with diet and H. pylori infection. This type of ade-
nocarcinoma is associated with extensive intestinal metaplasia
and atrophic gastritis, suggesting that the cancer develops as
a result of chronic inflammation. In contrast, the diffuse type
of adenocarcinoma is characterized by poorly differentiated
cells that spread diffusely and do not form glandular structures.
Genetic factors, rather than environmental influences, are
often associated with the diffuse type of adenocarcinoma [31].
Moreover, the WHO classification refines this further by
identifying specific carcinoma subtypes, such as papillary,
tubular, mucinous, and signet-ring cell carcinomas, each
with unique implications for treatment and prognosis [32].
Understanding these classifications aids in tailoring treatment
approaches, which is crucial, given the variability in survival
rates and treatment responses among the different types of
GC [33, 34].

Clinical treatment
The treatment landscape for GC encompasses a range of
therapeutic modalities, including surgery, radiation therapy,
chemotherapy, and targeted therapy (Figure 1). Surgical inter-
vention is the cornerstone of early-stage GC treatment and

is often considered the most effective means of achieving a
potential cure [8]. The extent of surgical intervention ranges
from partial gastrectomy to total gastrectomy, depending on the
location and size of the tumor, with radical gastrectomy and D2
lymphadenectomy being the standard procedures for resectable
tumors [35, 36]. However, surgery alone is often insufficient
for patients in advanced stages, necessitating additional treat-
ments, such as chemotherapy and radiation therapy. Common
regimens include platinum-based drugs and fluoropyrimidines,
which are used to reduce tumor size before surgery and elim-
inate residual cancer cells afterward [37]. The development
of targeted therapies, which specifically attack cancer cells by
interacting with particular molecular markers, has been driven
by advances in molecular biology. For example, trastuzumab
targets HER2-positive GC and has shown improved outcomes
when combined with chemotherapy [38]. Immunotherapy has
also emerged as a promising treatment approach, enhancing the
immune system’s ability to fight cancer. Agents, such as PD-1
and PD-L1 inhibitors have demonstrated potential benefits [33].
Despite the availability of these various treatment modalities,
the overall prognosis for GC patients remains poor, especially
for those diagnosed at advanced stages.

Future directions of natural products in GC treatment
Despite the availability of diverse treatment modalities for GC,
the prognosis remains poor, particularly for patients diagnosed
at advanced stages. These findings underscore the urgent need
for innovative therapeutic strategies to improve patient out-
comes. Among the promising approaches, natural products
derived from plants, marine organisms, and fungi offer signifi-
cant potential due to their diverse bioactive properties.

Plant-derived natural compounds: Plant-based compounds
are potent sources of anticancer agents. Polyphenols, includ-
ing flavonoids, such as quercetin and catechins like epigal-
locatechin gallate (EGCG), and resveratrol, found in grapes
and berries, are well-known for their anti-inflammatory and
anticancer properties [39]. These compounds inhibit tumor
growth and induce apoptosis by modulating critical signaling
pathways, such as p53, NF-κB, and STAT3 [40]. Additionally,
plant bioactive compounds have been reported to influence
the dysregulation of miRNAs and the ubiquitin–proteasome
pathway in cancer cells [41, 42]. Alkaloids such as berberine
and piperine target multiple molecular mechanisms involved in
cell cycle regulation and apoptosis, increasing the bioavailabil-
ity of therapeutic compounds and displaying direct anticancer
activity [43]. Terpenes, including monoterpenes and sesquiter-
penes like artemisinin, along with triterpenes like ursolic
acid, have been shown to inhibit tumor growth and promote
apoptosis [44, 45]. Sulfur compounds, such as sulforaphane,
influence gene expression and stimulate the production of
detoxification enzymes. Glycosides, such as ginsenosides, not
only modulate immune responses but also induce cancer cell
death [46]. Moreover, these natural saponins are being explored
as potential inhibitors of aquaporins, water channel proteins
that play crucial roles in cellular processes related to can-
cer progression [47]. Marine-derived compounds: The ocean
provides a vast repository of unique bioactive substances.
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Figure 1. Therapies for treating GC. Current GC treatments are stage based, with therapeutic interventions varying according to the cancer stage.
GC: Gastric cancer.

Marine-derived polysaccharides, such as fucoidan, not only
induce apoptosis and inhibit the proliferation of GC cells but
also enhance the immune response, suggesting a multifaceted
approach to cancer therapy [48]. Marine peptides have demon-
strated potential in inducing apoptosis, inhibiting angiogenesis,
and possessing antimetastatic properties [49]. Sesterterpenoids
and diterpenoids from marine sources, such as sponges, stabi-
lize microtubules, which are essential for controlling cell divi-
sion. This prevents the proper segregation of chromosomes,
ultimately leading to cancer cell death [50]. Marine alka-
loids interact with DNA and inhibit topoisomerases, disrupt-
ing DNA synthesis and repair mechanisms [51]. Fungi-derived
compounds: Fungi offer a wide range of effective compounds
against GC [52]. Polysaccharides, such as lentinan from shi-
itake mushrooms and beta-glucans found in various fungal
species enhance the immune system’s ability to fight cancer.
PSK (Krestin), a protein-bound polysaccharide from turkey
tail mushrooms, exhibits direct anticancer effects by inhibiting
cell proliferation and inducing apoptosis. Lectins from com-
mon mushrooms such as Agaricus bisporus induce apoptosis by
specifically binding to cancer cell membranes. Terpenoids such
as ganoderic acids from reishi mushrooms inhibit tumor inva-
sion and metastasis and are being explored to improve the effi-
cacy of chemotherapy. Among these, diterpenes stand out for
their potential to revolutionize GC treatment due to their abil-
ity to act synergistically with existing therapies. This synergy
could reduce the required dosages of traditional chemotherapy,
thereby minimizing toxicity. Furthermore, diterpenes have

shown promise in overcoming drug resistance by targeting and
modulating multiple pathways involved in cancer cell survival
and resistance mechanisms. The exploration of diterpenes in GC
treatment opens new avenues for research and holds the poten-
tial for significant breakthroughs in improving the efficacy of
existing treatment protocols and developing novel therapeutic
strategies. Their integration into GC treatment regimens offers
a promising path forward, emphasizing the need to harness
their full therapeutic potential to improve outcomes for patients
battling this challenging disease.

Diterpenes
Diterpenes are composed of four isoprene units with the molec-
ular formula C20H32 and are synthesized by various organisms
through the HMG-CoA reductase pathway. These compounds
have gained prominence in medicinal chemistry and biology
due to their diverse biological activities. They play a crucial
role in the development of therapies for cancer, inflammation,
and the prevention of osteoporosis. Many diterpenes and their
derivatives are effective anticancer agents, capable of affecting
multiple critical biological pathways. Taxanes, such as Taxol
(paclitaxel) and its albumin-bound formulations, are known
for their effectiveness in treating various cancers by stabilizing
microtubule formation, thus inhibiting cell division [53, 54].
Triptolide, extracted from the Thunder God Vine, possesses
potent immunosuppressive and anti-inflammatory properties
and plays a significant role in cancer therapy by modulat-
ing multiple signaling pathways that support tumor growth
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and survival [55]. Oridonin, derived from the herb Rabdosia
rubescens, induces apoptosis and inhibits cell proliferation,
making it a promising candidate for cancer treatment [56].
Andrographolide, from Andrographis paniculata, is recognized
for its anti-inflammatory and anticancer properties, poten-
tially acting through mechanisms that alter the body’s immune
response and directly curb cancer cell growth. Additionally,
diterpenes from coffee, such as cafestol, kahweol, and caffeic
acid, have been studied for their anticarcinogenic properties,
particularly their ability to activate detoxifying enzymes and
protect against oxidative stress [57].

Sources

Diterpenes are predominantly found in higher plants, where
they serve as crucial chemotaxonomic markers [58]. For exam-
ple, the Euphorbia species produces a diverse array of diter-
penes, including jatrophane, ingenane, and pepluane, which
have been extensively studied for their potent biological activ-
ities and potential therapeutic applications [58]. Fungi also
contribute to the diversity of diterpenes, particularly through
the production of indole diterpenes—compounds that com-
bine a diterpenoid backbone with an indole structure—such
as aflatrems and lolitrems, known for their neurotoxic and
antimicrobial properties [59]. Moreover, marine ecosystems
significantly expand the diversity of diterpenes, with marine
sponges and other organisms synthesizing variants that per-
form protective functions similar to their terrestrial coun-
terparts, such as defense against predators and microbial
infection [60]. In addition to naturally occurring diterpene
compounds, synthetic derivatives have been developed to opti-
mize their pharmacological characteristics. These synthetic
derivatives are engineered to enhance solubility, increase sta-
bility, and improve specificity toward biological targets [61]. For
example, modifications to the diterpene structure can improve
drug delivery mechanisms or reduce toxicity, making them
more suitable for clinical application. Synthetic analogs of Taxol
are a prime example, where alterations to the ester side chains
or the core diterpene structure have enabled these agents to
overcome drug resistance, thereby increasing their efficacy and
minimizing adverse effects [62]. These advances underscore
the crucial role of both natural and synthetic diterpenes in
the development of new therapies, integrating natural prod-
uct research with medicinal chemistry and biotechnology to
address complex health challenges.

Diterpene classification

Diterpenes exhibit remarkable structural diversity, ranging
from simple linear configurations to complex cyclic configu-
rations (Table 1). This diversity significantly influences their
biological functions and their applications in pharmacology
and biotechnology. The simplest acyclic diterpenes, such as
phytane and chromista, feature a straightforward carbon
backbone without cyclic structures. Macrocyclic diterpenes,
characterized by large ring structures formed by the join-
ing of molecular ends, are more complex and are predom-
inantly found in plant families such as Euphorbiaceae and
Thymelaeaceae [58]. Bicyclic diterpenes, such as the labdane

and abietane types, contain two fused rings, are prevalent in
coniferous trees, and exhibit anti-inflammatory and antimi-
crobial properties. Tricyclic diterpenes, which feature three
fused rings and include the cyathane and fusicoccane types, are
derived from both fungal and marine sources and are known
for their diverse biological activities [59, 60]. Tetracyclic diter-
penes, with four fused rings, include crucial plant growth hor-
mones such as gibberellins, along with structurally unique
molecules, such as stemarene and guanacastane, which are
renowned for their wide-ranging biological functions. Indole
diterpenes, which possess a diterpenoid backbone with an
indole structure, exhibit potent biological activities and are
predominantly produced by filamentous fungi. This category
includes variants such as the paxilline and nonpaxilline types.
The structural diversity of diterpenes is further enhanced by
modifications such as oxygen-containing functional groups
(e.g., hydroxyls and ketones), esterifications, and other sub-
stituents, which significantly alter their chemical properties
and biological effects. The intricate “6/6/7” ring systems of
isopimarane and syn-pimarane diterpenes exemplify sophis-
ticated biosynthetic pathways that contribute to the struc-
tural diversity of diterpenes. These compounds serve not only
as fundamental bioactive agents but also as chemotaxonomic
markers, highlighting their evolutionary significance and eco-
logical roles [63]. The structural diversity of diterpenes is fur-
ther augmented by various modifications: the incorporation of
oxygen-containing functional groups, including hydroxyls and
ketones; esterifications; and the addition of other substituents,
which significantly impact their chemical properties and bio-
logical activities. Cystathionine-type diterpenes, with their
tricyclic structures, exhibit various biological activities, includ-
ing anti-inflammatory, cytotoxic, antibacterial, and antiviral
properties. The complexity of their structure provides a versa-
tile framework for interactions with various biological targets.
Fusicoccane-type diterpenes, characterized by their tetracyclic
skeletal structures, are typically found in fungal genera, such
as Fusicoccum and Alternaria. The diverse biological activi-
ties of these compounds make them compelling subjects for
pharmacological research. Harziene-type diterpenes, primar-
ily identified in Trichoderma species, also possess tetracyclic
structures and are notable for their unique carbon skeletons and
wide range of biological activities, highlighting the potential of
diterpenes as promising therapeutic agents [64].

Mechanism of action of diterpenes against GC
Diterpenes target various critical aspects of GC cell biology
and tumor progression. Known for their diverse biological
effects (Figure 2) [65], their multifunctional nature allows
them to interact with and modify key molecular mecha-
nisms, making them valuable agents in the fight against GC
(Table 2).

Induction of oxidative stress

Elevated reactive oxygen species (ROS) play a dual role
in cellular biology. While ROS are critical for defending
against pathogens, an imbalance can induce oxidative dam-
age, leading to cancer cell apoptosis. This oxidative stress
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Table 1. Classification and sources of diterpenoids

Classifications Sources Example

Acyclic diterpenes Plantae Aphanamixis Aphanamixins A-F [9, 113],
Nemoralisin [114]

Chromista Bifurcaria Eleganediol, Bifurcane [115]

Photosynthetic organisms Phytol [116]

Monocyclic diterpenes Animalia Bovidae, Phasianidae Retinol [117]
Alcyoniidae Cembrene A [118]

Plantae Asteraceae Tagetones A-B [119]

Bicyclic diterpenes Labdanes Plantae Acanthaceae Andrographolide [120]
Lamiaceae Forskolin [121],

Sclareol [122]

Halimanes Plantae Asteraceae, Lamiaceae, and
Euphorbiaceae [123]

/

Clerodanes Plantae Euphorbiaceae Calyculins [124]

Casbane Animalia Alcyoniidae Sinularcasbane [125]
Plantae Euphorbiaceae Crotonitenone [126],

Jolkinolide E [17]

Tricyclic diterpenoids Abietanes Plantae Pinaceae Abietic acid [65],
Ferruginol [127]

Lamiaceae Carnosic acid [86]

Pimaranes Plantae Pinaceae Pimaric acid,
Isopimaric acid [128]

Cassanes Plantae Fabaceae Caesalpin A-B [22]

Tetracyclic diterpenoids Kaurane Plantae Lamiaceae Oridonin [22]
Asteraceae Steviol [121]

Trachylobane Plantae Asteraceae 6,19-Dihydroxy-ent-trachiloban-17-oic
acid [121]

Aphidicolane Fungi Nectriaceae Aphidicolin [60]

Stemodane Plantae Scrophulariaceae Stemodin [129]

Stemarane Plantae Scrophulariaceae Stemarin [128]

Beyerane Plantae Lamiaceae Beyeric acid [130]

Atisane Plantae Ranunculaceae Atisine [130]

Scopadulane Plantae Scrophulariaceae Scopadulcic acid A [130]

Gibberellane Fungi Nectriaceae Gibberellic acid [130]

Jatrophane Plantae Euphorbiaceae Jatrophone [131]

Ingenane Plantae Euphorbiaceae Ingenol [131]

Tigliane Plantae Euphorbiaceae Phorbol [131]

Taxane Plantae Taxaceae Taxane [54]

Daphnane Plantae Thymelaeaceae Daphnane [132]

Ppolycyclic—cembrane Animalia Alcyoniidae Cembranoids [118]

Others /

Various diterpenoids are categorized according to their chemical structure, ranging from acyclic to tetracyclic, with their respective natural sources
highlighted. This review includes specific examples of each diterpenoid to provide a clear reference for their potential applications and biological significance.
Each classification is further detailed by the type of organisms (plants, animals, or fungi) that produce these compounds, underscoring the diversity of
diterpenoids in nature. This comprehensive overview aids in understanding the wide distribution and ecological roles of these chemically and functionally
diverse molecules.
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Figure 2. Diterpenes in GC therapy. This figure illustrates how diterpenes target GC through multiple pathways. Diterpenes promote apoptosis by
activating p53 and inhibiting Bcl-2/Bcl-xl, reduce cell proliferation via mTORC1 and CREB, and induce autophagy and ferroptosis by disrupting PI3K/AKT and
increasing lipid peroxidation, respectively. Increased ROS production further aids in cancer cell death. This figure highlights the comprehensive anticancer
potential of diterpenes. GC: Gastric cancer.

response is a key therapeutic target of diterpenes in cancer
treatment. Diterpenes induce oxidative stress by damaging
DNA, lipids, and proteins, triggering a cascade of pro-apoptotic
signals while simultaneously inhibiting cell survival
pathways.

Diterpenes influence cancer cell biology primarily through
two mechanisms: direct induction of ROS and impairment of
mitochondrial function. Elevated ROS disrupts mitochondrial
integrity, releasing proapoptotic factors, activating caspases,
and leading to diterpene-induced cell death. Some diterpenes
directly increase ROS levels within cancer cells (Figure 3). For
example, sugiol has been demonstrated to significantly increase
intracellular ROS levels in SNU-5 GC cells, leading to cell
death [66]. Compounds, such as B19, increase ROS levels, trig-
gering ER stress and mitochondrial dysfunction, leading to GC
cell apoptosis [67].

Diterpenes can also compromise cellular antioxidant sys-
tems. For instance, auranofin (AF) induces ROS-mediated apop-
tosis by inhibiting thioredoxin reductase 1 (TrxR1) activity,
thereby increasing oxidative stress in GC cells. This inhibi-
tion disrupts the redox balance, enhancing the sensitivity of
cancer cells to oxidative damage [68]. Furthermore, combin-
ing diterpenes with other agents can amplify ROS production
and increase cytotoxicity. For example, the proliferation and
migration of renal cancer cells are synergistically inhibited by
kahweol acetate and cafestol, both derived from coffee, through
increased ROS levels. This approach could similarly be utilized
in GC therapy to enhance the efficacy of diterpenes [69].

Induction of cell cycle arrest and apoptosis
Apoptosis, a programmed cell death mechanism, plays a vital
role in the regulation and turnover of biological tissues. This
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Table 2. Multifaceted effects of diterpenes on GC

Compound name Cell line Mechanism Signaling pathway

Tanshinones SGC-7901
HUVECs

Angiogenesis ↓ Suppresses the PI3K/Akt/mTOR
signaling pathway VEGF ↓ [133]

Tanshinone IIA AGS cells Apoptosis and cell cycle arrest CDC2 and cyclin B1 expression ↓
TNF-α, FAS, caspase-8, and caspase-3 ↑ [134]

Dehydroabietic acid AGS
MKN-28
SNU-216
SNU-601
SNU-668
YCC-2

Apoptosis Inhibits survivin [73]

Sinulariolide AGS
NCI-N87

Migration and invasion ↓ FAK/PI3K/AKT/mT OR
MAPKs [135]

Oridonin MKN-28 Migration and invasion ↓ Inhibits ezrin [136]

Sugiol SNU-5
SNU-1

ROS ↑
Cell cycle arrest

Inhibits STAT3 signaling [66]

Curcumin derivative B19 SGC-7901
BGC-823
KATO III

ROS ↑ Inhibits TrxR1 enzyme activity [67]

Auranofin SGC-7901 BGC-823 KATO III ROS ↑ Inhibits TrxR1 activity [68]

Carnosol BGC803 and SGC-7901 Apoptosis and cell cycle arrest Inhibits the RSKs-CREB signaling
pathway [86]

Jolkinolide B MKN45 cell Apoptosis and cell cycle arrest Activates the ATR-CHK1-CDC25A
-Cdk2 signaling pathway [74]

Enumerating their effects across distinct cell lines, the key biological processes they target, and the signaling pathways they influence, this information
emphasizes the potential utility of diterpenes in precision GC therapeutics. GC: Gastric cancer.

process is driven by a balance between oncogene activation
and tumor suppressor gene deactivation, leading to abnormal
cell proliferation and differentiation. The apoptotic process is
pivotal for preventing tumorigenesis and can be categorized
into two main pathways: the extrinsic pathway and the intrin-
sic pathway [70]. The extrinsic pathway is initiated by trans-
membrane receptors, such as TNF receptors, which possess
cysteine-rich extracellular domains and a cytoplasmic “death
domain” essential for transmitting apoptotic signals. The bind-
ing of death ligands, including FasL/FasR and Apo2L/TRAIL
receptors (DR4 and DR5), to their respective receptors facil-
itates the recruitment of adaptor proteins, leading to the
formation of a death-inducing signaling complex (DISC). This
complex activates Caspase-8/3, ultimately resulting in apopto-
sis. Mutations in the death domain can disrupt this pathway,
causing receptor dysfunction.

The intrinsic pathway, which is triggered by internal cel-
lular stress, increases mitochondrial permeability, releasing
proapoptotic proteins such as cytochrome c, AIF, and other reg-
ulatory proteins into the cytosol. Cytochrome c interacts with
Apaf-1 to form an apoptosome, activating Caspase-9, which sub-
sequently activates Caspase-3. This cascade leads to the cleav-
age of PARP, a critical DNA repair enzyme, resulting in DNA
fragmentation and cell death.

Diterpenes, a class of naturally occurring compounds, have
demonstrated significant anticancer effects through diverse

mechanisms of action. Karmakar et al. discovered that a
pimarane diterpene from Boesenbergia pandurata induces apop-
tosis in TRAIL-resistant AGS and noncancerous HEK293 cells
by modulating the expression of death receptors (DR4 and
DR5), proapoptotic proteins (p53, Fas, CHOP, Bak), and cas-
pases while concurrently downregulating antiapoptotic pro-
teins such as Bcl-2 and c-FLIP [71]. Scopadulciol, derived from
Scoparia dulcis, targets AGS human gastric adenocarcinoma
cells, inducing apoptosis via the TRAIL pathway with selectivity
and efficacy [72].

Diterpenes also affect cell cycle regulation by increasing the
expression of cyclin-dependent kinase inhibitors such as p21
and p27, which are crucial for controlling cell cycle progression.
These inhibitors bind to and inhibit cyclin-CDK complexes,
thereby blocking the transition between cell cycle phases.
For example, dehydroabietic acid (DAA) induces cell cycle
arrest and apoptosis in GC cells by downregulating survivin,
a protein that inhibits apoptosis, and increasing the levels
of cleaved caspase-3, essential for apoptosis activation [73].
Jolkinolide B (JB), an ent-abietane-type diterpenoid from
Euphorbia fischeriana, causes DNA damage in GC MKN45
cells. JB induces S-phase cell cycle arrest by activating the
ATR-CHK1-CDC25A-Cdk2 signaling pathway, inhibiting cell
cycle progression and promoting apoptosis via the mito-
chondrial pathway [74]. Another diterpene, sageone, from
Rosmarinus officinalis, induces apoptosis in SNU-1 human

Ma et al.
Diterpenes in gastric cancer 7 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


GC cells and enhances cisplatin’s cytotoxic effects. This
is achieved through increased levels of cleaved caspase-
3/9 and ADP-ribose PARP, which are essential in apoptosis
execution [75].

Inhibition of cell proliferation and angiogenesis

Diterpenes inhibit GC cell proliferation by targeting key
signaling pathways controlling cell growth, such as the
MAPK/ERK and PI3K/Akt pathways. By disrupting these path-
ways, diterpenes reduce the proliferative capacity of cancer
cells, impeding tumor growth. Tanshinones, diterpenoids
derived from Salvia miltiorrhiza, inhibit GC angiogenesis
and cell proliferation through the PI3K/Akt/mTOR signaling
pathway. Cucurbitacins, a class of triterpenoids, inhibit
the Ras/Raf/ERK/MMP9 signaling pathway to combat GC.
Oridonin, a diterpenoid isolated from Rabdosia rubescens,
inhibits GC cell proliferation by targeting the TNF-α/androgen
receptor/TGF-β signaling pathway, altering cell morphology
and causing nuclear fragmentation, leading to reduced cell
viability and proliferation [76].

Inhibition of cell migration, invasion, and metastasis

Cell migration is an essential process for the development and
maintenance of multicellular organisms, and errors in this
process can lead to tumor formation and metastasis. External
chemical or mechanical signals can trigger cell migration [77],
providing opportunities for strategic cancer treatment inter-
ventions. Tanshinone IIA has been shown to effectively inhibit
GC cell migration by downregulating key proteins involved in
the migration process, such as NF-κB-p65, COX-2, and MMP-
2, -7, and -9. These proteins play significant roles in cell adhe-
sion, extracellular matrix degradation, and facilitating cellular
movements essential for invasion and metastasis. By targeting
these molecules, tanshinone IIA acts as a potent inhibitor of can-
cer cell invasion and metastasis, offering a promising approach
for limiting cancer progression [78]. Triptolide inhibits the
EMT phenotype, linked to increased migration, invasion, and
metastasis, in Taxol-resistant lung cancer cells [79]. Oridonin’s
antimetastatic effects include the inhibition of key signaling
pathways, such as the mTOR, HIF-1α/VEGF, and Notch path-
ways, along with the downregulation of proteins involved in
EMT, invasion, and angiogenesis in various cancer types [80].
A study on the GC cell line HGC-27 revealed that oridonin
treatment inhibited colony formation, linked to metastatic
potential [81]. Oridonin also inhibits tumor angiogenesis, asso-
ciated with metastasis [82]. Andrographolide treatment on the
GC cell line SGC-7901 decreased cell survival, migration, and
invasion in a dose-dependent manner by inhibiting MMP-2 and
MMP-9 activity and upregulating tissue inhibitors of MMPs
(TIMP-1 and TIMP-2) [83]. Transwell assays demonstrated that
PTX treatment inhibited the migration and invasion of human
GC cell lines SGC-7901 and MKN-45 [84, 85]. Carnosol sup-
pressed the anchorage-independent growth of GC cell lines
SGC-7901 and BGC803, and this is linked to metastatic potential.
Carnosol also inhibited gastric tumor growth in patient-derived
xenografts in a mouse model [86].

Modulation of autophagy

Autophagy, a type of programmed cell death, is crucial in can-
cer research due to its role in degrading and recycling cellular
components. This process is pivotal in cancer biology, influenc-
ing tumor progression and therapeutic response. As a funda-
mental biological mechanism in both growth and development,
autophagy also facilitates tumor cell death. Normal autophagic
activity is essential for maintaining cellular homeostasis, and its
dysregulation can contribute to tumorigenesis [87-89].

Diterpenes modulate autophagy by targeting various molec-
ular pathways, particularly the PI3K/Akt/mTOR pathway,
which serves as a central regulator of this process. Diter-
penes inhibit this pathway to initiate autophagy in cancer cells,
increasing the turnover of damaged organelles and proteins.
Depending on the context and degree of autophagy activation,
this can lead to either the survival or death of cancer cells.
Jaridon 6, a novel diterpene extracted from Rabdosia rubescens
(Hemsl.) Hara, has the potential to combat drug resistance
in GC. Jaridon 6 inhibits the proliferation of drug-resistant GC
cells by suppressing SIRT1 and inducing autophagy via a mecha-
nism involving inhibition of the PI3K–AKT pathway [84]. Simi-
larly, GC cell chemosensitivity is enhanced by tanshinone diter-
penes, such as tanshinone IIA, which is isolated from Salvia mil-
tiorrhiza. This enhancement is achieved by inducing autophagy
through the inhibition of the PI3K/Akt/mTOR signaling path-
way. This modulation helps counteract chemotherapy resis-
tance, demonstrating the potential of diterpenes to improve
therapeutic outcomes in GC patients [85].

Induction of ferroptosis

Ferroptosis is a form of programmed cell death characterized
by severe lipid peroxidation that leads to the destruction of cell
membranes [90]. Unlike other modes of cell death, ferroptosis
has unique biochemical and morphological characteristics [91].
Biochemically, ferroptosis involves significant iron accumu-
lation, lipid peroxidation, and elevated levels of toxic lipid
peroxidation products, such as malondialdehyde (MDA) and 4-
hydroxynonenal (4-HNE) [92]. Morphologically, cells undergo-
ing ferroptosis display significant alterations, such as swollen
or reduced mitochondria, increased membrane density, and
diminished or decreased cristae density [93]. Ferroptosis, a
recently identified form of cell death, is characterized by intra-
cellular iron overload and lipid peroxidation within the cell
membrane. Growing evidence indicates that ferroptosis is intri-
cately associated with various physiological and pathological
processes, especially in cancer. For example, in GC, the expres-
sion levels of genes related to ferroptosis, such as ferroptosis
suppressor protein 1 and CDGSH iron–sulfur domain 1, which
are biomarkers of poor prognosis for patients with GC, are
extremely high; these genes are promising therapeutic targets
for future GC treatment [94].

Various natural products with biological activity can exert
anticancer effects on cancer cells by initiating and executing the
ferroptosis process. For example, the diterpenoid kayadiol, by
activating p53, downregulates SLC7A11 and GPX4 expression,
inducing ferroptosis and inhibiting the proliferation of natural
killer T-cell lymphoma (NKTCL) cells [95]. In mammalian cells,
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the synthesis of glutathione (GSH) is facilitated by glutamate
cysteine ligase (GCL) and glutathione synthetase (GSS). The
formation of γ-glutamylcysteine from glutamate and cysteine
is catalyzed by GCL, and GSS subsequently adds glycine to
complete the synthesis of GSH [96]. In the roots of Actinidia
valvata Dunn, corosolic acid promotes the ubiquitination of
GSS by increasing the expression of homocysteine-inducible ER
protein with ubiquitin-like domain 1 (HERPUD1). This process
impairs GSH synthesis and induces ferroptosis in liver cancer
cells [97]. Consistent with in vivo studies showing that corosolic
acid inhibits tumor growth, this effect is achieved by promoting
HERPUD1-mediated ferroptosis [97].

The SLC7A11/GSH/GPX4 system is highlighted as a critical
target through which terpenoids inhibit cancer progression,
underscoring the importance of these findings. Additionally,
the ent-kaurane diterpenoid derivative Jiyuan oridonin A2
induces ferroptosis in GC cells by decreasing GPX4 levels and
causing ferrous iron accumulation. This is another mechanism
by which diterpenoids target redox balance to overcome cis-
platin resistance [98].

Challenges and prospects
Challenges

Despite the recognized potential of diterpenoids as anticancer
agents, their application in the treatment of GC presents sub-
stantial challenges due to factors such as low stability, solu-
bility, poor bioavailability, rapid metabolism, and significant
toxicity. Preclinical studies have explored numerous molecular
targets and therapeutic pathways of diterpenes for treating GC,
laying a solid foundation for human trials. However, translating
these findings into clinical settings is fraught with hurdles,
primarily concerning safety and toxicity profiles. For example,
despite its potent anticancer effects, triptolide is associated with
severe adverse effects, including gastrointestinal disturbances,
hematological toxicity, and potential nephrotoxicity [99].

To address these challenges, rigorous clinical trials are cru-
cial. These trials assess not only the efficacy and safety of
diterpenes but also their impact on patients’ quality of life.
A key example is the clinical deployment of minnelide, a
water-soluble prodrug of triptolide designed to mitigate some
of the harsh effects of the parent compound while preserving
its therapeutic efficacy. A phase I trial of minnelide, involving
patients with advanced gastrointestinal cancers, including GC,
was conducted as an open-label, single-center, dose-escalation
study. This trial highlighted a manageable safety profile with a
disease control rate of 54%. However, severe cerebellar toxicity
in some patients highlights ongoing concerns about diterpene
toxicity [100].

Despite these challenges, such trials are vital for opti-
mizing dosing guidelines, managing side effects, and ulti-
mately enhancing patient outcomes. Therefore, the clinical
translation of diterpenoid compounds for GC treatment faces
numerous challenges, including the need to optimize dosing,
manage side effects, and improve patient outcomes. These chal-
lenges underscore that although diterpene-based therapies may
help delay disease progression, significant work remains to
effectively manage side effects and verify long-term survival

benefits. Ensuring that these therapies can be safely integrated
into existing cancer treatment regimens requires continuous
research and meticulous adjustments during clinical trials and
drug development.

Prospects

As previously noted, the clinical application of diterpenoids
in treating GC is limited by challenges, such as low stability,
poor solubility, rapid metabolism, and significant toxicity.
To address these challenges and enhance their therapeutic
potential, substantial efforts are directed toward developing
synthetic derivatives that retain the anticancer properties of
natural diterpenoids while mitigating their drawbacks.

To overcome the toxicity issues associated with natural
triptolide, minnelide, a water-soluble prodrug, has been devel-
oped. Clinical trials focus on establishing safe dosing guidelines
and managing adverse effects to maximize therapeutic effi-
cacy while minimizing side effects [101]. Similarly, docetaxel,
a semisynthetic derivative of paclitaxel, which is naturally
derived from the bark of the Pacific Yew tree, incorporates
a hydroxyl functional group that enhances its solubility and
therapeutic efficacy. Compared to its parent compound, doc-
etaxel is widely used against various cancers and has supe-
rior pharmacokinetics [102]. Additionally, BC-46, originally
derived from rare blushwood trees, faced significant challenges
due to the rarity of the source. Advances in synthetic pro-
duction techniques have made it possible to produce it on a
scalable and sustainable basis, thus overcoming previous sup-
ply limitations [103]. Moreover, forskolin, a diterpene from
Indian coleus, and its derivatives are known for their potent
activation of adenylyl cyclase, which leads to increased lev-
els of cAMP in various cell types. Enhancements, such as the
addition of hydroxyl groups, have improved forskolin’s solu-
bility and interaction with adenylyl cyclase, thereby increasing
its biological efficacy [104]. To optimize the efficacy of diter-
penes in cancer treatment and overcome challenges, such as
selective toxicity, poor bioavailability, and rapid metabolism,
advanced drug delivery systems are essential. Nanotechnolo-
gies, such as nanoparticles and liposomes, enhance the sta-
bility and targeted delivery of diterpenes, ensuring controlled
release directly at tumor sites while minimizing exposure
to healthy cells. This targeted approach not only maximizes
therapeutic benefits but also extends the presence of diter-
penes in the system. For example, encapsulating triptolide
in liposomes enhances its bioavailability and reduces sys-
temic toxicity [105]. These liposomes are engineered to release
their payload specifically at the tumor site, optimizing drug
efficacy and minimizing side effects. Similarly, poly(ethylene
glycol)-block-poly(ε-caprolactone) nanoparticle micelles have
been used to increase the bioavailability of triptolide, signif-
icantly enhancing its therapeutic potential while mitigating
systemic toxicity [106]. Moreover, magnetic nanoparticles offer
a targeted approach by using an external magnetic field to
direct diterpenes precisely to tumor sites, which is especially
beneficial for reaching tumors that are otherwise difficult to
access with conventional methods [107]. Once localized, these
nanoparticles provide controlled drug release, concentrating
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Figure 3. Diterpenes in GC therapy. Mechanism of ROS elevation by diterpenes. Diterpenes increase ROS, activating the NRF2 and HIF1α pathways and
impacting glutathione dynamics, leading to redox balance disruption and subsequent GC cell death. GC: Gastric cancer; ROS: Reactive oxygen species.

the treatment on the tumor and sparing healthy tissues. Addi-
tionally, mesoporous silica nanoparticles, known for their large
surface areas and adjustable pore sizes, have high drug load-
ing capacities. These nanoparticles can be further modified
with specific ligands to target tumor markers, improving the
delivery efficiency of diterpenes to cancer cells [108]. Integrat-
ing diterpenes with conventional anticancer therapies offers a
promising strategy to increase the efficacy of cancer treatments
and mitigate the development of resistance. This approach har-
nesses the ability of diterpenes to sensitize cancer cells to estab-
lished chemotherapy drugs, such as platinum-based drugs and
fluoropyrimidines, improving tumor reduction and extending
progression-free survival (PFS). For example, preclinical stud-
ies have demonstrated that combining triptolide, from which
the prodrug minnelide is derived, with cisplatin significantly
increases apoptosis in GC cells, enhancing therapeutic out-
comes through synergistic effects [109]. In clinical settings, the
incorporation of diterpenes into treatment protocols primar-
ily aims to overcome drug resistance, a significant challenge
in advanced GC therapy. Trials combining diterpenes with
other agents, such as docetaxel and ramucirumab, have shown
promising results, improving patient responses and survival
rates while maintaining manageable safety profiles [110, 111].
However, further comprehensive studies are necessary to fully
understand the long-term benefits and potential toxicities of
these combinations. Moreover, paclitaxel has been effectively
utilized as a second-line therapy when combined with tar-
geted treatments. A meta-analysis involving 1574 patients with
advanced GC indicated that adding targeted therapies to pacli-
taxel improved not only PFS but also overall survival (OS),

despite the increased occurrence of adverse events such as
neutropenia and fatigue [112] (Figure 4). The future of diter-
pene research in cancer therapy centers on the development of
new compounds, innovative drug delivery systems, and strate-
gic combinations with existing anticancer agents, all aiming
to optimize their therapeutic potential. Success in these areas
requires precise and comprehensive clinical trials that focus on
validating the efficacy and safety of diterpenes, necessitating
the careful selection of patient populations, determination of
optimal dosages, and rigorous assessment of long-term effects
and side effects. Furthermore, a deeper understanding of the
molecular mechanisms through which diterpenes act is cru-
cial. Employing advanced technologies such as genomics, pro-
teomics, and metabolomics will provide essential insights into
their interactions with biomolecules, assisting in crafting more
targeted and effective treatment protocols.

Conclusion
Research on diterpenes has illuminated their remarkable poten-
tial in oncology, particularly for the treatment of GC. These nat-
ural compounds are known for their robust anticancer effects,
such as inducing apoptosis, inhibiting tumor cell migration
and invasion, and modulating the tumor microenvironment.
Notably, their ability to prevent cancer metastasis represents
a paradigm shift and presents a novel therapeutic opportunity
for patients afflicted with GC. This review underscores the
innovative aspects of diterpene research, particularly its role in
regulating underexplored mechanisms, such as ferroptosis and
autophagy, which could redefine therapeutic strategies for GC.
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Figure 4. Overview of current and emerging research on diterpenes. Advancements in molecular modifications (e.g., minnelide, docetaxel, and EBC-46),
integration with nanodelivery systems (e.g., liposomes, mesoporous silica, and magnetic nanoparticles), and combinations with traditional cancer therapies
(e.g., triptolide with 5-fluorouracil, ginsenoside Rg3 with cisplatin, and andrographolide with doxorubicin) aim to enhance diterpene efficacy and delivery in
GC treatment, focusing on improved outcomes and reduced toxicity. GC: Gastric cancer.

Despite the compelling potential of diterpenes, their clinical
application faces significant hurdles, including low bioavail-
ability, unresolved safety and efficacy concerns, and an incom-
plete understanding of their mechanisms of action. Addressing
these challenges through focused and continuous research is
crucial. A deeper understanding of the molecular interactions
of diterpenes and advancements in their formulation and deliv-
ery are essential to harness their full therapeutic potential. By
overcoming these barriers, diterpenes could become central
to advanced GC treatment regimens and potentially improve
the clinical outcomes of patients with this challenging disease,
leading to significant advancements in medical oncology.
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