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R E S E A R C H A R T I C L E

Development and evaluation of interpretable machine
learning regressors for predicting femoral neck bone
mineral density in elderly men using NHANES data
Wen He 1#, Song Chen 2#∗, Xianghong Fu 1#, Licong Xu 1#, Jun Xie 2∗, and Jinxing Wan 3∗

Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to
40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In addressing the critical
need for early identification of osteoporosis through routine screening of femoral neck bone mineral density (FNBMD), this study
developed a user-friendly prediction model aimed at men aged 50 years and older, a demographic often overlooked in osteoporosis
screening. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), the study involved outlier detection
and handling, missing value imputation via the K-nearest neighbor (KNN) algorithm, and data normalization and encoding. The dataset
was split into training and test sets with a 7:3 ratio, followed by feature screening through the least absolute shrinkage and selection
operator (LASSO) and the Boruta algorithm. Eight different machine learning algorithms were then employed to construct predictive
models, with their performance evaluated through a comprehensive metric suite. The random forest regressor (RFR) emerged as the
most effective model, characterized by key predictors, such as age, body mass index (BMI), poverty income ratio (PIR), serum calcium,
and race, achieving a coefficient of determination (R2) of 0.218 and maintaining robustness in sensitivity analyses. Notably, excluding
race from the model resulted in sustained high performance, underscoring the model’s adaptability. Interpretations using Shapley
additive explanations (SHAP) highlighted the influence of each feature on FNBMD. These findings indicate that our predictive model
effectively aids in the early detection of osteoporosis, potentially reducing the incidence of OFNFs in this high-risk population.
Keywords: Femoral neck bone mineral density (FNBMD), osteoporotic femoral neck fractures (OFNFs), National Health and
Nutrition Examination Survey (NHANES), machine learning, random forest regressor (RFR).

Introduction
Osteoporotic femoral neck fractures (OFNFs) represent a preva-
lent orthopedic challenge among the elderly, comprising up to
40% of all osteoporotic fractures and significantly impairing
health while increasing mortality [1–3]. Experts anticipate a
2.7-fold increase in the incidence of such fractures in East-
ern Asia, with projections rising from 18,388 cases in 2010
to 50,421 by 2035 [4]. Early detection of individuals with
osteoporosis and the implementation of anti-osteoporotic treat-
ments are crucial measures for preventing these fractures [5].
Femoral neck bone mineral density (FNBMD) is recognized
as a valuable predictor of OFNFs and is recommended for
diagnosing osteoporosis and assessing low bone mass [6].
Although dual-energy X-ray absorptiometry (DXA) is the stan-
dard method for evaluating FNBMD, its high cost, limited
accessibility, and associated radiation exposure restrict its

widespread use in community screenings [7]. Consequently,
developing a simple, cost-effective, and reliable alternative for
routine FNBMD assessment is imperative.

Machine learning (ML), a branch of artificial intelligence
(AI), excels at handling extensive heterogeneous datasets and
capturing intricate relationships between features [8–10]. It has
demonstrated significant potential in predicting healthcare out-
comes and complications, aiding clinicians in making informed
decisions, and improving patient care [11–13]. This opens inno-
vative avenues for creating accurate and reliable models for the
real-time prediction of FNBMD, which is crucial for assessing
patients’ bone health and facilitating early osteoporosis diag-
nosis. Currently, ML algorithms have been effectively utilized
to screen for osteoporosis with satisfactory outcomes [14–16].
Nevertheless, most studies have primarily focused on the mod-
els’ ability to identify patients with osteoporosis, rather than on
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the real-time prediction of bone mineral density (BMD) values.
Moreover, while osteoporosis is more prevalent among women
aged 50 and above, leading to a concentration of research within
this demographic, fewer studies have addressed men of the
same age group. There are increasing calls for routine BMD
screenings for men aged 50 and older [17, 18]. Addressing this
research gap, the application of ML algorithms for real-time
FNBMD prediction in this male population holds substantial
clinical significance.

The objective of this study is to develop and validate
a straightforward, cost-effective, and reliable ML prediction
model for FNBMD in elderly men. This involves comparing the
predictive performance of various ML algorithms. The hypothe-
sis of this study is that the optimal model can accurately predict
FNBMD using only a limited set of readily accessible features.
This capability is crucial for the early identification of osteo-
porosis in older men, enabling the implementation of targeted
preventive strategies aimed at reducing the incidence of OFNFs.

Materials and methods
This study adhered to the Strengthening the Reporting of Obser-
vational Studies in Epidemiology (STROBE) reporting guide-
lines. The overall design is depicted in Figure 1.

Data source
The data for this study were sourced from the continuous
National Health and Nutrition Examination Survey (NHANES),
conducted by the National Center for Health Statistics of the
Centers for Disease Control and Prevention (CDC) (https://
wwwn.cdc.gov/nchs/nhanes/). NHANES data were gathered
from a nationally representative sample of the civilian, non-
institutionalized U.S. population, utilizing a multistage prob-
ability design. The dataset includes questionnaire responses,
laboratory test results, and physical examination data.

Study population
We incorporated data from NHANES covering the period from
January 2005 to March 2020, excluding the 2011–2012 and
2015–2016 cycles due to the unavailability of FNBMD data.
To ensure a comprehensive and representative dataset while
avoiding potential biases and redundancies, we merged data
from the specified periods and took careful measures to include
each individual only once. The exclusion criteria were as fol-
lows: (1) female participants; (2) individuals under the age of 50;
(3) participants with hypoglycemia (fasting plasma glucose
[FPG] ≤ 50 mg/dL or 2.8 mmol/L) or diabetes (FPG ≥ 110 mg/dL
or 7.0 mmol/L) at baseline; and (4) individuals with condi-
tions including cancer, thyroid disorders, chronic renal fail-
ure, inflammatory arthritis, and chronic liver disease, as well
as those using medications for dyslipidemia, corticosteroids,
sex hormones, and diuretics. Participants with incomplete or
invalid FNBMD data were excluded from the final analysis.
Additionally, cases with outliers, defined as data points exceed-
ing three times the interquartile range (IQR), were removed, as
they constituted only 1% of the dataset.

BMD examination
BMD measurements, expressed in grams per square centimeter
(gm/cm2), were conducted using DXA with Hologic QDR 4500A
fan-beam densitometers (Hologic Inc., Bedford, MA, USA) [1, 2].
All measurements were conducted by NHANES radiological
technologists, who had undergone extensive training and cer-
tification. In the present research, FNBMD data were selected
as the outcome because the femoral neck is often proposed as
the reference skeletal site for defining osteoporosis in epidemi-
ological research [3].

Features
Based on the literature [4–6], the following features were
included: age, body mass index (BMI), race, education level,
marital status, drinking status, smoking status, physical activ-
ity, family history of osteoporosis (FHOS), poverty income ratio
(PIR), systolic blood pressure (SBP), diastolic blood pressure
(DBP), high-density lipoprotein (HDL), FPG, total cholesterol
(TC), triglycerides, low-density lipoprotein (LDL), serum cal-
cium, serum phosphorus, and serum 25-hydroxyvitamin D3
(25(OH)D3). Race was categorized as “Mexican American,”
“non-Hispanic White,” “non-Hispanic Black,” or “other race”;
education level was classified as “less than high school,” “high
school,” or “college or above”; and marital status was divided
into “married or living with partner” or “single.” Regarding
health-related behaviors, smoking status was defined based on
a lifetime history of smoking at least five packs of cigarettes
(equivalent to 100 cigarettes), categorized as “yes” for those
meeting this criterion and “no” for those who smoked fewer
than five packs and were currently nonsmoking. Alcohol con-
sumption was binary, with individuals drinking at least once
a month over the past year classified as “yes” and all oth-
ers as “no”. FHOS was specifically noted if a parent had been
diagnosed with the condition. Physical activity was quantified
in metabolic equivalent hours per week (MET-min/week) of
moderate-to-vigorous physical activity, with categories set at
“less active (< 600 MET-min/week)” and “active (≥ 600 MET-
min/week)” [7].

Missing data
The details of the missing data are presented in Table S1. To
enhance statistical power and reduce bias, the K-nearest neigh-
bor (KNN) imputation [19], with K equal to 10, was employed to
address missing values in eligible cases. To assess the imputa-
tion effect, we performed separate outlier tests on the imputed
data and compared them with the raw data to identify any
between-group differences, as detailed in Table S1. Following
the acquisition of the qualified interpolated data, we applied
Z-score standardization to quantitative features and one-hot
encoding to qualitative features. The data were then divided
into a training set and a test set in a ratio of 7:3 for subsequent
analysis.

Feature selection
We implemented a stringent feature selection process to pin-
point the most pertinent predictors for constructing the pre-
diction model, using only the training cohort to prevent data
leakage. Initially, a pairwise Pearson or Spearman correlation
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Figure 1. Flowchart of the study design. NHANES: National health and nutrition examination survey; KNN: K-nearest neighbors; MLR: Multivariable linear
regression; DTR: Decision tree regression; SVR: Support vector regression; GPR: Gaussian process regression; XGBR: Extreme gradient boosting regression;
RFR: Random forest regression; ETR: Extra-trees regression; MLPR: Multi-layer perceptron regression; R2: Coefficient of determination; MAE: Mean absolute
error; MSE: Mean squared error; MAPE: Mean absolute percentage error; RMSE: Root mean squared error; TyG-BMI: Triglyceride and glucose-body mass
index; PIR: Poverty income ratio; LASSO: Least absolute shrinkage and selection operator; RCS: Restricted cubic spline.

matrix was utilized to evaluate the continuous features for
collinearity, setting a correlation threshold of r > 0.8. Collinear-
ity, which occurs when two or more predictor variables are
highly correlated, can obscure the unique contribution of each
variable to the outcome. Consequently, we selected the most
readily available variables among the collinear ones for further
analysis. Next, we employed a two-step approach using both
the Boruta algorithm [8] and the least absolute shrinkage and
selection operator (LASSO) [9]. We then took the intersection of
the predictors identified by both algorithms to ensure only the
most relevant and robust variables were included in the devel-
opment of our prediction model. This combined methodology
aims to enhance the model’s accuracy and generalizability while
minimizing the risk of overfitting or incorporating irrelevant
predictors.

Model development and validation
Common supervised ML algorithms for regression encom-
pass linear models such as linear regression, foundational
tree-based methods like decision trees and ensemble-based ran-
dom forests, support vector machines (SVMs) which excel in
complex function mapping with kernel function selection, neu-
ral networks renowned for their adaptability and proficiency
in managing noisy data, and Gaussian process models, prized
for their probabilistic approach and ability to estimate pre-
diction uncertainty [10]. (1) A linear model, specifically mul-
tivariable linear regression (MLR), posits a linear relationship
between input and output variables. It is straightforward
and establishes a baseline for comparison. While predicting
phenomena such as FNBMD might surpass the complexity
MLR can handle, it remains an excellent benchmark to gauge
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the degree of enhancement provided by more sophisticated
non-linear ML algorithms. (2) Tree-based models such as deci-
sion tree regression (DTR), extreme gradient boosting regres-
sion (XGBR), random forest regression (RFR), and extra-trees
regression (ETR) are highly effective in managing complex
medical datasets. Renowned for their interpretability and capa-
bility to process both numerical and categorical data, these
models excel at identifying non-linear relationships and intri-
cate interactions among variables, making them particularly
valuable in health research [11]. (3) Support vector regres-
sion (SVR), a variant of the SVM, is frequently selected for
its effectiveness in high-dimensional spaces. SVR is particu-
larly skilled at navigating the complex patterns prevalent in
medical datasets, establishing it as a robust choice for intri-
cate data analysis [12]. (4) Gaussian process regression (GPR),
a non-parametric method, is highly valued for its ability to pro-
vide uncertainty measures alongside predictions. This feature
is particularly advantageous for analyzing medical data, which
often involves considerable uncertainty [13]. (5) Multi-layer
perceptron regression (MLPR), a neural network approach, is
adept at capturing the intricate and often non-linear patterns
found in large health datasets [14]. By incorporating a diverse
array of ML approaches, our study offers a comprehensive com-
parison of FNBMD prediction across various models.

All models were implemented using the “sklearn,”
“xgboost,” “numpy,” and “pandas” packages, with grid search
utilized to optimize the hyperparameters for each model. This
method systematically explores a broad spectrum of hyper-
parameter values, enhancing the probability of discovering
the most effective global solution for all critical parameters.
This approach facilitates thorough yet efficient tuning, which
is particularly advantageous given the limited size of our
dataset. To assess the effectiveness of the predictive ML models,
we employed five specific metrics for regression issues: the
coefficient of determination (R2), mean absolute error (MAE),
mean squared error (MSE), mean absolute percentage error
(MAPE), and root mean squared error (RMSE).

Model explainability
ML models often face challenges in terms of explainability, par-
ticularly as the complexity and accuracy of the models increase,
potentially reducing interpretability [15, 16]. To address this
issue, we utilized SHapley Additive exPlanations (SHAP) val-
ues from the game theory-based “shap” package to plot feature
importance for global explainability. This approach enhanced
our understanding of the decision-making processes within the
model that demonstrated the best performance [16].

To ascertain the most critical features for predicting FNBMD,
we employed the permutation importance method. This tech-
nique evaluates feature importance by assessing the impact of
randomly permuting (shuffling) the values of a feature on the
model’s predictive performance. To minimize error and sta-
bilize the results, we conducted 1000 permutations for each
feature across all constructed models, thereby generating 1000
importance values per feature. We then calculated the mean of
these importance values and ranked the features based on these
averages.

Sensitivity analysis
To ensure the robustness of our main findings, we imple-
mented three sensitivity analyses. Firstly, we removed racial
features from the optimal model and then evaluated the new
model’s performance in both the training and test sets. This was
undertaken to develop a model independent of racial features,
thereby expanding its applicability. Secondly, recognizing the
documented reliability of the TyG-BMI index as a predictor of
BMD [17, 18], we computed this index from imputed data and
integrated it into the selected algorithm for comparison with
our optimal model. Details on the TyG-BMI calculation are pro-
vided in the supplementary material (Data S1). Lastly, we con-
ducted restricted cubic spline (RCS) analyses [20] for TyG-BMI
and each quantitatively selected feature post-engineering, set-
ting five knots at the 5th, 35th, 50th, 65th, and 95th percentiles
to flexibly model its relationship with FNBMD. This analysis
was aimed at verifying the plausibility of the interpretations
suggested by the SHAP values.

Sample size calculation
The R package “pmsampsize,” version 1.1.2, was employed to
calculate the required minimum sample size for training [21].
We selected 22 candidate predictor parameters to construct a
multivariable prediction model for the continuous outcome. We
based our calculations on the assumption that an existing pre-
diction model in the same field has an adjusted R2 of 0.8 [6, 17],
and that FNBMD values in the present population have a mean
of 0.81 and a standard deviation of 0.13. Consequently, the min-
imum sample size needed for the training cohort was deter-
mined to be 256 cases. Additionally, following Richard’s recom-
mendations for external validation of a prognostic model [22],
we used a confidence interval width of ≤ 5 for the calibration-
in-the-large (considered precise on an outcome scale of 0–100)
and ≤ 0.3 for the calibration slope to calculate the sample size,
which indicated a minimum of 235 cases were required. This
analysis confirms that the eligible population is adequate for
both model construction and validation.

Ethical statement
According to the Helsinki Declaration of 1975, as revised in
2000, all procedures adhered to the ethical standards of the
responsible committee on human experimentation. All partic-
ipants provided written informed consent to participate in this
study, which was approved by the Institutional Review Board
of the NHANES. All methods in this study were carried out in
accordance with relevant guidelines and regulations.

Statistical analysis
Continuous data were evaluated for normality using the
Shapiro–Wilk test and presented as mean with standard devi-
ation (SD) for normally distributed data, or median with IQR
for non-normally distributed data. The outliers were detected
using boxplots and Grubbs’ test. The homogeneity of variance
across groups was assessed using the Levene test. For data fol-
lowing a Gaussian distribution, parametric tests such as the
unpaired two-tailed Student’s t-test or Welch’s t-test were used
for comparisons between the two groups. For non-Gaussian
data, the Mann–Whitney U test was employed for two-group
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comparisons. Categorical data were expressed as counts and
percentages and analyzed using the chi-squared test or Fisher’s
exact test, the latter being applied when more than 20% of
cells had expected frequencies of less than 5. Statistical sig-
nificance was determined by a two-sided P value of less than
0.05. All statistical analyses were performed using R software,
version 4.1.0.

Results
Participant characteristics
A total of 1182 eligible participants from the NHANES data
collected between January 2005 and March 2020 were
included in the analysis. The exclusion criteria are detailed
in Figure 1. Missing values were found in BMI, smoking
status, drinking status, and nearly all laboratory test-related
features. Comparative analyses between the raw data and the
imputed data showed no statistically significant differences
(Table S1). No outliers were detected in either the complete
dataset (data with all missing values removed) or the imputed
data.

In the imputed dataset, the median age of participants was
61 years (IQR 55–68), and the median BMI was 33.4 kg/m2 (IQR
29.7–36.5). The majority were non-Hispanic White (42.8%), had
at least a bachelor’s degree (48.5%), were not single (71.3%), and
reported drinking alcohol (75.9%). The median FNBMD of these
participants was 0.80 (IQR 0.71–0.89).

Of all eligible participants, 829 were assigned to the train-
ing group and 353 to the test group. Participant characteristics
were similar across both cohorts, with no significant differ-
ences (P > 0.05) noted (Table 1). The median TyG-BMI values
were 228 (IQR 200–260) for the training group and 231 (IQR
206–265) for the test group. The median FNBMD values were
consistent across both groups, each registering at 0.80 (IQR
0.71–0.89).

Feature selection
As depicted in Figure 2A, Pearson correlation values for LDL
and TC exceeded 0.8, signaling the presence of collinearity.
We opted to select LDL for the subsequent feature selection
phase. The Boruta algorithm (Figure 2B) and LASSO algorithm
(Figure 2C and 2D) identified a total of six features as signifi-
cant predictors of the outcome. These encompassed age, BMI,
non-Hispanic Black, non-Hispanic White, PIR, and serum cal-
cium. The chosen features were then integrated into eight ML
regressors to develop predictive models.

Hyperparameters tuning
Table S2 lists the optimized hyperparameters for each algo-
rithm. Hyperparameter tuning was not conducted on the MLR
model, as it does not involve hyperparameters.

Development and validation of prediction models
The identified six predictors and optimized hyperparame-
ters were incorporated into the FNBMD prediction regressors.
Within the training cohort, the RFR model demonstrated supe-
rior performance, achieving the highest R2 at 0.712, the lowest
MSE at 0.005, and an RMSE of 0.072. Upon removing the racial

features from the model, the performance of the adjusted model
(referred to as ABPC-RFR, which includes age, BMI, PIR, and
serum calcium) improved significantly, with R2 rising to 0.841
and reductions in MAE, MSE, MAPE, and RMSE reaching the
most favorable values of 0.043, 0.003, 0.054, and 0.057, respec-
tively. This model outperformed all others, including the TyG-
BMI-RFR model, which solely incorporates TyG-BMI. In the test
cohort, the ABPC-RFR model’s performance was comparable to
that of the original RFR model, which integrates six features,
and it surpassed the performance of all other models examined
(as detailed in Table 2).

In Figure 3, the predictive behavior of the RFR, ABPC-RFR,
and TyG-BMI-RFR models varies with the true value of FNBMD.
Specifically, when the true FNBMD value is below 0.8, the pre-
dicted values from these models are consistently higher than the
actual values. Conversely, when the true FNBMD value exceeds
0.8, the predictions fall below the true values. This pattern sug-
gests a decline in model performance when predicting extreme
values. The scatter density plots (Figure 3A, 3B, and 3C) show
that the ABPC-RFR model’s fitted line deviates the least from
the ideal line, signifying it has the best predictive performance
among the models. Similarly, in the scatter plots for the training
set (Figure 3D, 3E, and 3F), the ABPC-RFR model again shows
the smallest angle of deviation from the perfect line, indicating
superior performance in the training phase. In the test set, the
fitted lines of the RFR and ABPC-RFR models exhibit similar
angles of deviation from the perfect line, suggesting that their
performance in the test set is comparable. These observations
align with the findings presented in Table 2.

Model explainability
The SHAP summary plots illustrate the impact of each fea-
ture across the random forest (RF) model (Figure 4A), the
adjusted BMI, PIR, and serum calcium random forest (ABPC-
RFR) model (Figure 4B), and the TyG-BMI random forest (TyG-
BMI-RFR) model (Figure 4C). SHAP values above zero suggest
higher FNBMD values, whereas values below zero indicate
lower FNBMD values. For instance, a higher BMI (depicted in
red) correlates with larger SHAP values, suggesting that indi-
viduals with a higher BMI tend to have greater FNBMD val-
ues. Conversely, as age increases, the SHAP values typically
decrease, indicating an association between advancing age and
bone loss. These trends are depicted in Figure 5A and 5B. Addi-
tionally, a higher TyG-BMI value generally results in a larger
SHAP value, demonstrating a positive relationship between this
index and FNBMD (Figure 4C).

Permutation feature importance analysis identified the piv-
otal features for predicting FNBMD. To evaluate the relative
importance of these features across all eight models, a rank-
ing score system was employed. The most critical feature in
each model was assigned a ranking of 1, with rankings progres-
sively decreasing down to 6 for the least significant variable. As
detailed in Table 3, BMI emerged as the most influential predic-
tor, achieving a mean ranking of 1.0 ± 0.0 and a median ranking
of 1.0 (IQR 1.0–1.0). It was followed by non-Hispanic Black, age,
PIR, serum calcium, and non-Hispanic White in terms of their
impact on FNBMD prediction.
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Table 1. Baseline characteristics of training and test datasets

Characteristics Training set (n = 829) Test set (n = 353) P value

FNBMD (gm/cm2), median (IQR) 0.80 (0.71, 0.89) 0.80 (0.71, 0.89) 0.725

TyG-BMI, median (IQR) 228 (200, 260) 231 (206, 265) 0.135

Age (years), median (IQR) 61.0 (55.0, 68.0) 61.0 (55.0, 70.0) 0.225

BMI (kg/m2), median (IQR) 32.8 (29.7, 36.5) 33.4 (29.9, 36.5) 0.421

Race, n (%) 0.084

Mexican American 108 (13.0) 47 (13.3)
Other Hispanic 93 (11.2) 25 (7.08)
Non-Hispanic White 353 (42.6) 153 (43.3)
Non-Hispanic Black 202 (24.4) 83 (23.5)
Other race 73 (8.81) 45 (12.7)

Education, n (%) 0.130

Less than high school 227 (27.4) 115 (32.6)
High school 197 (23.8) 70 (19.8)
College or above 405 (48.9) 168 (47.6)

Marital status, n (%) 0.114

Married or living with partner 580 (70.0) 263 (74.5)
Single 249 (30.0) 90 (25.5)

Drinking status, n (%) 0.447

No 205 (24.7) 80 (22.7)
Yes 624 (75.3) 273 (77.3)

Smoking status, n (%) 0.292

No 571 (68.9) 254 (72.0)
Yes 258 (31.1) 99 (28.0)

Physical activity, n (%) 0.779

Less active 369 (44.5) 154 (43.6)
Active 460 (55.5) 199 (56.4)

FHOS, n (%) 0.367

No 765 (92.3) 331 (93.8)
Yes 64 (7.72) 22 (6.23)

PIR, median (IQR) 2.70 (1.40, 4.28) 2.59 (1.35, 4.04) 0.364

SBP (mmHg), median (IQR) 127 (117, 139) 128 (119, 139) 0.598

DBP (mmHg), median (IQR) 74.0 (67.0, 80.0) 74.0 (67.0, 81.0) 0.71

HDL (mmol/L), median (IQR) 1.29 (1.09, 1.55) 1.29 (1.09, 1.60) 0.751

FPG (mmol/L), median (IQR) 5.66 (5.33, 6.05) 5.77 (5.38, 6.11) 0.171

TC (mmol/L), median (IQR) 4.99 (4.40, 5.61) 4.97 (4.32, 5.56) 0.323

Triglycerides (mmol/L), median (IQR) 1.09 (0.81, 1.43) 1.09 (0.79, 1.46) 0.522

LDL (mmol/L), median (IQR) 3.10 (2.53, 3.60) 3.03 (2.46, 3.60) 0.346

Serum calcium (mmol/L), median
(IQR)

2.33 (2.28, 2.38) 2.33 (2.28, 2.38) 0.609

Serum phosphorus (mmol/L),
median (IQR)

1.10 (1.00, 1.20) 1.07 (0.97, 1.16) 0.565

Serum 25(OH)D3 (ng/mL), median
(IQR)

59.7 (52.4, 67.6) 58.9 (51.0, 67.0) 0.253

P values between groups were assessed by the chi-square and Mann–Whitney U tests. IQR: Inter-quartile range; FNBMD: Femoral neck bone mineral density;
TyG-BMI: Triglyceride and glucose to body mass index; FHOS: Family history of osteoporosis; PIR: Poverty income ratio; SBP: Systolic blood pressure; DBP:
Diastolic blood pressure; HDL: High-density lipoprotein; FPG: Fasting plasma glucose; TC: Total cholesterol; LDL: Low-density lipoprotein.
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Figure 2. Feature engineering. (A) Displaying Spearman and Pearson correlation matrix of continuous variables. Feature pairs with correlation coefficients
greater than 0.8 are bolded; (B) Illustrating feature selection with the Boruta algorithm. The features highlighted in bold and color are identified by
intersecting the results from the Boruta and LASSO algorithms; (C and D) Showcasing feature selection using the LASSO algorithm. HDL: High-density
lipoprotein; PIR: Poverty income ratio; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; BMI: Body mass index; FPG: Fasting plasma glucose;
TC: Total cholesterol; LDL: Low-density lipoprotein.

Sensitivity analysis
In the RCS analysis depicted in Figure 5, age demonstrates
a negative linear correlation with FNBMD, as evidenced by
non-significance for non-linearity (P = 0.879) (Figure 5A).
Serum calcium displays a positive linear relationship with
FNBMD (P for non-linearity = 0.239) (Figure 5D). BMI and
TyG-BMI both exhibit positive non-linear associations with
FNBMD, with P values for non-linearity being less than 0.001
and 0.030, respectively (Figure 5B and Figure 5E). PIR also
shows a distinct non-linear association with FNBMD (P for
non-linearity < 0.001) (Figure 5C). These findings align with
the interpretations provided by the SHAP values, confirm-
ing the consistency of the results across different analytical
approaches.

Discussion
Osteoporotic fractures of the proximal femur significantly
impact health and increase the mortality rate among the
elderly. Early detection of osteoporosis and the initiation of

anti-osteoporotic treatments are critical in preventing such
fractures. FNBMD is utilized both for diagnosing osteoporosis
and as a key predictor of OFNFs. However, the methods cur-
rently available for assessing FNBMD are not suitable for
routine osteoporosis screening. Therefore, it is essential to
develop a straightforward, cost-effective, and reliable alterna-
tive method for assessment. In this study, we created and vali-
dated an ML-based prediction model for FNBMD specifically for
men aged 50 years and older. Through meticulous feature selec-
tion, six key predictors were identified: age, BMI, non-Hispanic
Black, non-Hispanic White, PIR, and serum calcium. Among
the eight models evaluated, the RFR model showed the best
performance across all metrics. When race-related variables
were excluded, the adjusted RFR model (ABPC-RFR), incorpo-
rating the remaining predictors, performed comparably to the
full RFR model and significantly outperformed the TyG-BMI-
RFR model. The simplified model required only three demo-
graphic factors (age, BMI, and PIR) and one laboratory test
variable (serum calcium) for making predictions. This sim-
plicity enhances its usability for routine osteoporosis checks
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Table 2. FNBMD prediction results for each model with metrics

Model R2 MAE MSE MAPE RMSE

Training Test Training Test Training Test Training Test Training Test

MLR 0.264 0.168 0.092 0.095 0.014 0.014 0.116 0.121 0.116 0.120

DTR 0.252 0.150 0.092 0.095 0.014 0.015 0.117 0.121 0.117 0.121

SVR 0.298 0.204 0.090 0.093 0.013 0.014 0.114 0.119 0.114 0.117

GPR 0.691 0.099 0.058 0.106 0.006 0.019 0.072 0.134 0.075 0.138

XGBR 0.174 0.115 0.096 0.097 0.015 0.015 0.119 0.123 0.123 0.123

RFRa 0.712 0.218 0.053 0.092 0.005 0.013 0.067 0.118 0.072 0.116

RFRb 0.821 0.199 0.043 0.092 0.003 0.014 0.054 0.119 0.057 0.117

RFRc 0.158 0.073 0.097 0.100 0.015 0.017 0.124 0.127 0.123 0.130

ETR 0.708 0.212 0.052 0.093 0.005 0.014 0.064 0.118 0.073 0.117

MLPR 0.135 0.094 0.098 0.097 0.016 0.016 0.119 0.119 0.126 0.125

The metrics of the best-performing model are bolded. aThe model included predictors of age, BMI, PIR, non-Hispanic Black, non-Hispanic White, and
serum calcium. bThe model included predictors of age, BMI, PIR, and serum calcium. cThe model employed TyG-BMI as a predictor. FNBMD: Femoral
neck bone mineral density; R2: Coefficient of determination; MAE: Mean absolute error; MSE: Mean squared error; MAPE: Mean absolute percentage
error; RMSE: Root mean squared error; MLR: Multivariable linear regression; DTR: Decision tree regression; SVR: Support vector regression; GPR: Gaussian
process regression; XGBR: Extreme gradient boosting regression; RFR: Random forest regression; ETR: Extra-trees regression; MLPR: Multi-layer perceptron
regression; TyG-BMI: Triglyceride and glucose-body mass index.

among older men of diverse races, aligning well with the study’s
hypothesis.

Our important analysis revealed that BMI was the most valu-
able predictor of FNBMD in this study population (Table 3).
Indeed, BMI is not only a simple and widely used health indi-
cator but also a significant predictor of bone tissue struc-
ture, closely associated with BMD [23–25]. Compared to the
BMD of the lumbar vertebral body, FNBMD is more stable and
less influenced by factors such as degeneration, osteophytes,
and sclerosis [26]. Several studies have consistently shown a
positive correlation between BMI and the absolute values of
FNBMD, exhibiting a synergistic increasing trend [19, 23–25].
In research involving 900 elderly individuals, Dogan et al. [27]
confirmed that femoral BMD increased with rising BMI lev-
els, noting statistically significant differences in femoral BMD
among men across different BMI categories, with the high-
est levels observed in the obese group (BMI of 30 kg/m2 and
above) compared to those with ideal body weight. Similarly,
Kirchengast et al. [28] found that BMD increased with both
weight and BMI in both sexes, with higher BMD values in over-
weight individuals compared to those with ideal body weight,
aligning with the findings of our study (Figure 4A and 4B
and 5B).

By combining model interpretative analysis with RCS analy-
sis, we observed that changes in FNBMD values with increas-
ing BMI were more pronounced when BMI was below 30
and diminished when BMI exceeded 30. This pattern may be
attributed to both mechanical effects—where heavier loads on
the skeleton induce bone-specific deformations that stimulate
osteoblast activity, enhancing the synthesis and expression
of osteoblast-related genes, thereby increasing bone density
and enabling the skeleton to adapt to applied stress [29, 30]—
and hormonal effects due to increased estrogen production

in adipose tissue. Weight gain and enhanced adipose tis-
sue may promote the conversion of androgens to estrogens,
improving bone mass in both men and women while main-
taining healthy levels of insulin and regulatory factors like
insulin-like growth factor-1, leptin, and lipocalin [26, 31]. These
observations suggest potential variations in FNBMD between
non-obese and obese populations, possibly necessitating dis-
tinct diagnostic criteria for osteoporosis in each group. Addi-
tionally, to address the modifiable factor of BMI, we recom-
mend promoting exercise, particularly strength training, to
increase lean body mass and stimulate bone remodeling to
better accommodate loading. However, it is crucial to note
that while a higher BMI can be protective against osteo-
porosis, maintaining a BMI around or slightly below 30 is
advisable to prevent the increased risks of falls, degenerative
changes, and systemic diseases associated with obesity in the
elderly [26, 27].

Age is another important predictor of FNBMD. In this
research, we used SHAP values to understand the ML models
(RFR and ABPC-RFR) along with RCS analysis to show how age
and FNBMD are related. The results showed that age is inversely
related to FNBMD, i.e., BMD decreases significantly with age.
This finding is consistent with the existing literature [25, 26].
In a study of adult men in Kosovo, Hoxha et al. [25] identified
a negative relationship between age and FNBMD, attributing
this natural bone mass loss to the aging process. This insight is
crucial for guiding local BMD assessments and initiating early
preventive strategies against osteoporosis and related fractures
in older men. Similarly, Jiang et al. [26] studied the FNBMD of
358 Chinese males aged 50 and older, arriving at the same con-
clusion. They interpreted this trend as a decline in bone mass
beginning around the age of 50, due to osteoblast dysfunction
and an increase in osteoclast resorption. The application of ML
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Figure 3. Scatter plots for FNBMD prediction in RFR models. (A and D) Illustrating scatter density plots (A) and scatter training/test plots (D) for the
RFR model, incorporating age, BMI, non-Hispanic Black and White, PIR, and serum calcium; (B and E) Displaying plots for the RFR model including age, BMI,
PIR, and serum calcium; (C and F) Displaying plots for the RFR model solely containing the TyG-BMI index. Scatter density plots comprise all data points,
whereas the scatter plots are separately composed of training and test sets. FNBMD: Femoral neck bone mineral density; RFR: Random forest regressor;
BMI: Body mass index; PIR: Poverty income ratio; TyG-BMI: Triglyceride and glucose-body mass index.

in this research offers a detailed understanding of how age
interacts with other factors to influence bone health. Impor-
tantly, incorporating age as a predictor in our model under-
scores the necessity of early intervention and tailored preven-
tive measures for the elderly. The data-driven insights pro-
vided by this study showcase the potential of ML to enhance
predictive models for FNBMD, enabling healthcare providers to
more effectively identify and manage individuals at high risk
for osteoporosis.

The association between PIR and FNBMD observed in
our study adds a critical socioeconomic dimension to the
understanding of bone health. Our analysis revealed that a
higher PIR (≥ 4 in the RCS analysis), indicative of greater
socioeconomic status, correlates with improved FNBMD. This
aligns with research by Du et al. [32], who reported similar find-
ings and suggested that individuals with higher socioeconomic
status have better access to healthcare resources, nutrition,
and lifestyle choices conducive to bone health. A meta-analysis
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Figure 4. SHAP value of features and their impact on the model output for FNBMD prediction in RFR models. (A) Displaying SHAP plots for the RFR
model, incorporating age, BMI, non-Hispanic Black and White, PIR, and serum calcium; (B) Illustrating SHAP plots for the RFR model including age, BMI,
PIR, and serum calcium; (C) Showcasing SHAP plots for the RFR model solely containing the TyG-BMI index. SHAP: Shapley additive exPlanations; FNBMD:
Femoral neck bone mineral density; BMI: Body mass index; PIR: Poverty income ratio; TyG-BMI: Triglyceride and glucose-body mass index.

encompassing eight epidemiological studies demonstrated that
most population-based research supports the observation that
individuals with higher income levels are more likely to exhibit
higher BMD [33]. This finding was further validated in another
cross-sectional study involving 11,075 representative partici-
pants from the United States [34]. The positive impact of socioe-
conomic status on FNBMD emphasizes the potential barriers
faced by lower-income populations in maintaining bone health,
possibly due to limited access to nutritious food, healthcare
services, and opportunities for physical activity [34]. Address-
ing these disparities could significantly improve bone health
outcomes across different population segments. Therefore, our
findings advocate for targeted public health interventions and
policies that enhance access to bone health resources in eco-
nomically disadvantaged communities, potentially reducing
the prevalence of osteoporosis-related complications.

Serum calcium, a critical element in bone metabolism, was
positively correlated with FNBMD in our study, supporting
the hypothesis that adequate calcium levels are essential for
optimal bone density. This observation is in concordance with
the work of Pan et al. [35], who noted that calcium plays a
pivotal role not only in bone formation but also in maintain-
ing the structural integrity of the bone matrix. The implica-
tions of these findings suggest that monitoring and managing
serum calcium levels could be a key strategy for preventing

bone density deterioration, especially in populations at risk
for osteoporosis [36]. Additionally, our models reinforce the
importance of integrating nutritional and metabolic factors
into comprehensive assessments of bone health, advocating
for a holistic approach to osteoporosis prevention and treat-
ment strategies that encompass dietary calcium intake and its
metabolic management.

The TyG-BMI, a novel metabolic marker explored in our
study, demonstrated a significant predictive value for FNBMD.
This finding underscores the intertwined roles of metabolic
health and bone density. Notably, our analysis indicates that
higher TyG-BMI values correlate with increased FNBMD, sug-
gesting that metabolic efficiency and body composition col-
lectively influence bone health. This relationship mirrors the
results presented by Zhan et al. [37], who found that metabolic
markers like the TyG index provide insight into the risk of
metabolic bone diseases beyond traditional lipid and glucose
measurements. The association between TyG-BMI and FNBMD
enhances our understanding of how composite indices, which
encapsulate multiple metabolic risks, can serve as effective
tools for assessing bone health. Emphasizing the TyG-BMI in
clinical evaluations could offer a more comprehensive assess-
ment strategy, aiding in the early identification of individuals
at risk for osteoporosis, thus facilitating timely intervention
strategies.
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Figure 5. Restricted cubic spline analysis. (A–E) Displaying the association between continuous features and FNBMD. Each curve employs five knots
located at the 5th, 35th, 50th, 65th, and 95th percentiles. Shaded regions denote the 95% confidence intervals. FNBMD: Femoral neck bone mineral density;
BMI: Body mass index; PIR: Poverty income ratio; TyG-BMI: Triglyceride and glucose-body mass index.

Table 3. Predictor importance ranking in each model

Model BMI Non-Hispanic Black Age PIR Serum calcium Non-Hispanic White

Training Test Training Test Training Test Training Test Training Test Training Test

MLR 1 1 2 2 3 3 6 4 4 5 5 6

DTR 1 1 2 2 3 3 4 4 5 5 6 6

SVR 1 1 2 2 3 3 5 4 4 5 6 6

GPR 1 1 6 5 2 2 4 3 3 6 5 4

XGBR 1 1 3 2 2 3 5 5 6 6 4 4

RFR 1 1 2 2 3 3 4 4 5 5 6 6

ETR 1 1 2 2 3 3 4 4 5 5 6 6

MLPR 1 1 2 3 3 4 4 2 6 6 5 5

Mean ± SD 1.0 ± 0.0 1.0 ± 0.0 2.6 ± 1.4 2.5 ± 1.1 2.8 ± 0.5 3.0 ± 0.5 4.5 ± 0.8 3.8 ± 0.9 4.8 ± 1.0 5.4 ± 0.5 5.4 ± 0.7 5.4 ± 0.9

Median (IQR) 1.0
(1.0, 1.0)

1.0
(1.0, 1.0)

2.0
(2.0, 2.3)

2.0
(2.0, 2.3)

3.0
(2.8, 3.0)

3.0
(3.0, 3.0)

4.0
(4.0, 5.0)

4.0
(3.8, 4.0)

5.0
(4.0, 5.3)

5.0
(5.0, 6.0)

5.5
(5.0, 6.0)

6.0
(4.8, 6.0)

BMI: Body mass index; PIR: Family income to poverty ratio; MLR: Multivariable linear regression; DTR: Decision tree regression; SVR: Support vector
regression; GPR: Gaussian process regression; XGBR: Extreme gradient boosting regression; RFR: Random forest regression; ETR: Extra-trees regression;
MLPR: Multi-layer perceptron regression; SD: Standard deviation; IQR: Inter-quartile range.

Leveraging demographic (age, BMI, and PIR), laboratory
test (serum calcium) characteristics, and the novel metabolic
index (TyG-BMI) associated with FNBMD, we selected the
RFR algorithm to construct three models: the RFR, ABPC-RFR,
and TyG-BMI-RFR model. Among these, the ABPC-RFR model
emerged as the simplest and most practical. The computa-
tion of TyG-BMI is relatively cumbersome, and the predictive

efficacy based on this index is significantly lower compared to
the ABPC-RFR model. Furthermore, the fact that race-related
characteristics do not influence the ABPC-RFR model’s perfor-
mance suggests that race may not be a prominent factor in
our specific dataset. These findings indicate that the ABPC-RFR
model can effectively predict FNBMD in men over 50 years
of age and holds potential for routine community screening.
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This facilitates the early detection of osteoporosis and the ini-
tiation of anti-osteoporosis treatments to prevent OFNFs. It is
noteworthy that the present study did not encompass races
from Asia and other regions. This limitation could influence
the generalizability of our findings. Future analyses should aim
to include more diverse racial groups to better understand the
impact of race on FNBMD predictions and ensure the model’s
applicability across different populations.

Our study has several strengths. First, we utilized the large,
nationally representative NHANES dataset, which provides a
diverse and statistically significant sample, enhancing the gen-
eralizability of our findings. Meticulous data processing tech-
niques were also employed, including the handling of out-
liers and the KNN estimation of missing data, ensuring data
integrity. Furthermore, our study featured rigorous feature
selection and a comprehensive model development and valida-
tion process. Multiple ML algorithms were utilized to pinpoint
the best-performing model, optimizing predictive accuracy.
Moreover, we incorporated various evaluation metrics and
model interpretability techniques, such as SHAP values, to
ensure transparency and facilitate the interpretation of results.
Lastly, several sensitivity analyses were conducted to test the
robustness of our findings, ensuring the reliability of our con-
clusions in different scenarios and settings.

The present study has several limitations that warrant con-
sideration. First, the exclusion of female participants and cer-
tain age groups limits the generalizability of our findings to
the entire population. Women, particularly post-menopausal
women, are at high risk for osteoporosis, and the dynamics of
BMD may differ significantly between genders. Our study also
excluded patients with hypoglycemia, diabetes, and those on
medications for chronic diseases. These exclusions were made
to control for potential confounding factors that could intro-
duce bias into the model. However, we recognize that these
patients represent a significant subset of the population, and
their exclusion may limit the applicability of our findings to
broader populations. Future research should aim to validate our
models in more diverse populations that include these impor-
tant subsets to ensure the generalizability and robustness of the
predictive models and to detect changes in the ranking of fea-
ture importance. Additionally, our reliance on cross-sectional
data from NHANES prevents us from establishing causality
between the predictors and FNBMD; longitudinal studies would
be required to confirm the directionality of these associations.
Another limitation is the potential for residual confounding
due to variables not included or not available in the NHANES
dataset. Lastly, while ML models offer potent predictive capabil-
ities, generalizing these models to different healthcare settings
can be challenging. Future research should focus on further
validating the model across diverse populations to ensure its
broader applicability and effectiveness in varying healthcare
contexts.

Conclusion
In conclusion, our study demonstrates that FNBMD can be
easily and accurately assessed by integrating four readily

accessible features (age, BMI, PIR, and serum calcium) through
advanced ML techniques, outperforming the novel metabolic
index (TyG-BMI). Our model interpretation results provide a
deeper and more nuanced understanding of femoral neck bone
health risks. These insights pave the way for more targeted and
effective interventions to prevent and manage OFNFs in the
development of femoral neck osteoporosis, especially in popu-
lations traditionally underrepresented in bone health studies,
such as older men. Future research should aim to validate these
predictive models in a broader range of populations to enhance
their applicability and effectiveness. By continually refining
these models and addressing the limitations outlined, we can
better meet the healthcare needs of diverse populations and
improve outcomes in bone health management.
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Supplemental data
Data S1. Triglyceride and glucose-body mass index (TyG-BMI)
Body mass index (BMI) was calculated using the weight divided by the square of height (weight/height2) formula. After an overnight fast, venous
samples were collected using aseptic techniques for the analysis of phosphorus, total calcium, plasma glucose, and lipid levels.

The definitions of the TyG-BMI terms were determined as follows:

1. The TyG index was calculated using the formula: Ln [triglycerides (TG) in mg/dL × fasting plasma glucose (FPG) in mg/dL / 2].
2. TyG-BMI was derived by multiplying the TyG index by BMI, expressed in kg/m2.
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Table S1. Comparisons between raw and imputation datasets

Characteristics Missing values n (%) Raw dataset (n = 1182) Imputation dataset (n = 1182) P value

FNBMD (gm/cm2), median (IQR) 0.80 (0.71, 0.89) 0.80 (0.71, 0.89) 1.000

Age (years), median (IQR) 61.0 (55.0, 68.0) 61.0 (55.0, 68.0) 1.000

BMI (kg/m2), median (IQR) 20 (1.7) 32.8 (29.7, 36.6) 33.4 (29.7, 36.5) 0.917

Race, n (%) 1.000

Mexican American 155 (13.1) 155 (13.1)
Other Hispanic 118 (10.0) 118 (10.0)
Non-Hispanic White 506 (42.8) 506 (42.8)
Non-Hispanic Black 285 (24.1) 285 (24.1)
Other race 118 (10.0) 118 (10.0)

Education, n (%) 1.000

Less than high school 342 (28.9) 342 (28.9)
High school 267 (22.6) 267 (22.6)
College or above 573 (48.5) 573 (48.5)

Marital status, n (%) 1.000

Married or living with partner 843 (71.3) 843 (71.3)
Single 339 (28.7) 339 (28.7)

Drinking status, n (%) 276 (23.4) 0.365

No 235 (25.9) 285 (24.1)
Yes 671 (74.1) 897 (75.9)

Smoking status, n (%) 426 (36.0) 0.056

No 487 (64.4) 825 (69.8)
Yes 269 (35.6) 357 (30.2)

Physical activity, n (%) 1.000

Less active 523 (44.2) 523 (44.2)
Active 659 (55.8) 659 (55.8)

FHOS, n (%) 1.000

No 1096 (92.7) 1096 (92.7)
Yes 86 (7.28) 86 (7.28)

PIR, median (IQR) 118 (10.0) 2.44 (1.29, 4.42) 2.64 (1.39, 4.21) 0.355

SBP (mmHg), median (IQR) 127.0 (117.0, 140.0) 127.0 (117.0, 139.0) 0.745

DBP (mmHg), median (IQR) 70 (5.9) 74.0 (67.0, 81.0) 74.0 (67.0, 80.8) 0.979

HDL (mmol/L), median (IQR) 24 (2.0) 1.29 (1.09, 1.55) 1.29 (1.09, 1.55) 0.670

FPG (mmol/L), median (IQR) 4 (0.3) 5.72 (5.33, 6.11) 5.72 (5.33, 6.11) 0.947

TC (mmol/L), median (IQR) (1.4) 4.97 (4.37, 5.61) 4.97 (4.37, 5.61) 0.847

Triglycerides (mmol/L), median (IQR) 67 (5.7) 1.07 (0.79, 1.45) 1.09 (0.80, 1.44) 0.404

LDL (mmol/L), median (IQR) 21 (1.8) 3.08 (2.51, 3.60) 3.08 (2.51, 3.60) 0.764

Serum calcium (mmol/L), median (IQR) 28 (2.4) 2.33 (2.28, 2.38) 2.33 (2.28, 2.38) 0.985

Serum phosphorus (mmol/L), median (IQR) 14 (1.2) 1.07 (1.00, 1.20) 1.07 (1.00, 1.18) 0.986

Serum 25(OH)D3 (ng/mL), median (IQR) 668 (56.5) 59.3 (42.0, 75.1) 59.4 (51.9, 67.5) 0.545

P values between groups were assessed by the chi-square and Mann–Whitney U tests. IQR: Inter-quartile range; FNBMD: Femoral neck bone mineral density;
BMI: Body mass index; FHOS: Family history of osteoporosis; PIR: Poverty income ratio; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HDL:
High-density lipoprotein; FPG: Fasting plasma glucose; TC: Total cholesterol; LDL: Low-density lipoprotein.
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Table S2. Optimization of hyperparameters using grid search

Model Hyperparameter Range of hyperparameter in grid search Selected value

MLR – – –

DTR max_depth 50, 200, 500, 800, 1000, 1200 1000
min_samples_split 2, 10, 18, 26, 34, 42 10
min_samples_leaf 3, 11, 19, 27, 35, 43 43
max_features 0.8, 0.9, 1.0 0.8

SVR gamma 10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 100 10-1

C 10-3, 10-2, 10-1, 100, 101, 102, 103, 104 10-1

epsilon 10-3, 10-2, 10-1, 100, 101, 102 10-1

GPR alpha 10-10, 10-9, 10-8, 10-7, 10-6, 10-5, 10-4, 10-3,
10-2, 10-1, 100, 101

10-1

XGBR n_estimators 100, 200, 400 100
max_depth 3, 5, 7, 10 7
learning_rate 0.1, 0.2, 0.3 0.3
gamma 0, 5, 10, 20 0
reg_alpha 5, 10, 15 5

RFRa n_estimators 100, 200, 400 100
criterion ‘squared_error’, ‘absolute_error’, ‘poisson’ ‘absolute_error’
max_depth 10, 50, 100, 200, 400 100
min_samples_split 2, 4, 8, 16 2
min_samples_leaf 1, 2, 4, 8 2
max_features 0.8, 0.9, 1.0 0.8

RFRb n_estimators 100, 200, 400 200
criterion ‘squared_error’, ‘absolute_error’, ‘poisson’ ‘absolute_error’
max_depth 10, 50, 100, 200, 400 400
min_samples_split 2, 4, 8, 16 4
min_samples_leaf 1, 2, 4, 8 1
max_features 0.8, 0.9, 1.0 0.9

RFRc n_estimators 100, 200, 400 100
criterion ‘squared_error’, ‘absolute_error’, ‘poisson’ ‘poisson’
max_depth 10, 50, 100, 200, 400 10
min_samples_split 2, 4, 8, 16 8
min_samples_leaf 1, 2, 4, 8 2
max_features 0.8, 0.9, 1.0 0.9

ETR n_estimators 100, 200, 400 200
criterion ‘squared_error’, ‘absolute_error’ ‘absolute_error’
max_depth 10, 50, 100 100
min_samples_split 2, 4, 8, 16 2
min_samples_leaf 1, 2, 4, 8 1
max_features 0.6, 0.8, 1.0 0.8
max_samples 0.8, 0.9, 1.0 1.0
ccp_alpha 0, 1, 10, 100, 1000 0

MLPR hidden_layer_sizes (10,), (20,), (10, 10), (20, 20), (10, 20, 10) (10, 10)
activation ‘identity’, ‘tanh’, ‘relu’ ‘identity’
solver ‘sgd’, ‘adam’ ‘adam’
alpha 10-4, 10-3, 10-2, 10-1 10-2

learning_rate ‘constant’, ‘adaptive’ ‘constant’
learning_rate_int 10-3, 10-2, 10-1 10-1

aThe model included predictors of age, BMI, PIR, non-Hispanic Black, non-Hispanic White, and serum calcium. bThe model included predictors of age,
BMI, PIR, and serum calcium. cThe model employed TyG-BMI as a predictor. MLR: Multivariable linear regression; DTR: Decision tree regression; SVR:
Support vector regression; GPR: Gaussian process regression; XGBR: Extreme gradient boosting regression; RFR: Random forest regression; ETR: Extra-trees
regression; MLPR: Multi-layer perceptron regression; TyG-BMI: Triglyceride and glucose-body mass index.
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