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ABSTRACT 

Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the 

elderly population, accounting for up to 40% of all osteoporotic fractures and leading to 

considerable health deterioration and increased mortality. In addressing the critical need for 

early identification of osteoporosis through routine screening of femoral neck bone mineral 

density (FNBMD), this study developed a user-friendly prediction model aimed at men aged 

50 years and older, a demographic often overlooked in osteoporosis screening. Utilizing data 

from the National Health and Nutrition Examination Survey (NHANES), the study involved 

outlier detection and handling, missing value imputation via the K nearest neighbor (KNN) 

algorithm, and data normalization and encoding. The dataset was split into training and test 

sets with a 7:3 ratio, followed by feature screening through the least absolute shrinkage and 

selection operator (LASSO) and the Boruta algorithm. Eight different machine learning 

algorithms were then employed to construct predictive models, with their performance 

evaluated through a comprehensive metric suite. The random forest regressor (RFR) emerged 

as the most effective model, characterized by key predictors such as age, body mass index 

(BMI), poverty income ratio (PIR), serum calcium, and race, achieving a coefficient of 

determination (R²) of 0.218 and maintaining robustness in sensitivity analyses. Notably, 

excluding race from the model resulted in sustained high performance, underscoring the 

model’s adaptability. Interpretations using Shapley additive explanations (SHAP) highlighted 

the influence of each feature on FNBMD. These findings indicate that our predictive model 
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effectively aids in the early detection of osteoporosis, potentially reducing the incidence of 

OFNFs in this high-risk population.  

Keywords: Femoral neck bone mineral density; osteoporotic femoral neck fractures; 

NHANES; machine learning; random forest regressor. 
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INTRODUCTION 

Osteoporotic femoral neck fractures (OFNFs) represent a prevalent orthopedic challenge 

among the elderly, comprising up to 40% of all osteoporotic fractures and significantly 

impairing health and increasing mortality [1-3]. Experts anticipate a 2.7-fold increase in the 

incidence of such fractures in Eastern Asia, projecting a rise from 18,388 cases in 2010 to 

50,421 by 2035 [4]. Early detection of individuals with osteoporosis and the implementation 

of anti-osteoporotic treatments are crucial measures for preventing these fractures [5]. Femoral 

neck bone mineral density (FNBMD) is acknowledged as a valuable predictor of OFNFs and 

is recommended for diagnosing osteoporosis and assessing low bone mass [6]. Although Dual-

energy X-ray absorptiometry (DXA) is the standard method for evaluating FNBMD, its high 

cost, limited accessibility, and associated radiation exposure restrict its widespread use in 

community screenings [7]. Consequently, developing a simple, cost-effective, and reliable 

alternative for routine FNBMD assessment is imperative. 

Machine learning (ML), a branch of artificial intelligence, excels at handling extensive 

heterogeneous datasets and capturing intricate relationships between features [8-10]. It has 

demonstrated significant potential in predicting healthcare outcomes and complications, aiding 

clinicians in making informed decisions, and improving patient care [11-13]. This opens 

innovative avenues for creating accurate and reliable models for the real-time prediction of 

FNBMD, which is crucial for assessing patients’ bone health and facilitating early osteoporosis 

diagnosis. Currently, ML algorithms have been effectively utilized to screen for osteoporosis 

with satisfactory outcomes. [14-16]. Nevertheless, most studies have primarily focused on the 
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models’ ability to identify patients with osteoporosis, rather than on the real-time prediction of 

BMD values. Moreover, while osteoporosis is more prevalent among women aged 50 and 

above, leading to a concentration of research within this demographic, fewer studies have 

addressed men of the same age group. There are increasing calls for routine BMD screenings 

for men aged 50 and older [17, 18]. Addressing this research gap, the application of ML 

algorithms for real-time FNBMD prediction in this male population holds substantial clinical 

significance. 

The objective of this study is to develop and validate a straightforward, cost-effective, and 

reliable ML prediction model for FNBMD in elderly men. This involves comparing the 

predictive performance of various ML algorithms. The hypothesis of this study is that the 

optimal model can accurately predict FNBMD using only a limited set of readily accessible 

features. This capability is crucial for the early identification of osteoporosis in older men, 

enabling the implementation of targeted preventive strategies aimed at reducing the incidence 

of OFNFs. 

MATERIALS AND METHODS  

This study adhered to the STROBE reporting guidelines. The overall design is depicted in 

Figure 1. 

Data source 

The data for this study was sourced from the continuous National Health and Nutrition 

Examination Survey (NHANES), conducted by the National Center for Health Statistics of the 

Centers for Disease Control and Prevention (https://wwwn.cdc.gov/nchs/nhanes/). NHANES 
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data were gathered from a nationally representative sample of the civilian, noninstitutionalized 

US population, utilizing a multistage probability design. The dataset includes questionnaire 

responses, laboratory testing results, and physical examination data. 

Study population 

We incorporated data from the NHANES covering the period from January 2005 to March 

2020, excluding the 2011–2012 and 2015–2016 cycles due to the unavailability of FNBMD 

data. To ensure a comprehensive and representative dataset, while avoiding potential biases 

and redundancies, we merged data from the specified periods and took careful measures to 

include each individual only once. The exclusion criteria were as follows: (1) female 

participants; (2) individuals under the age of 50; (3) participants with hypoglycemia (fasting 

plasma glucose ≤ 50 mg/dl or 2.8 mmol/L) or diabetes (fasting plasma glucose ≥ 110 mg/dl or 

7.0 mmol/L) at baseline; and (4) individuals with conditions including cancer, thyroid 

disorders, chronic renal failure, inflammatory arthritis, and chronic liver disease, as well as 

those using medications for dyslipidemia, corticosteroids, sex hormones, and diuretics. 

Participants with incomplete or invalid FNBMD data were excluded from the final analysis. 

Additionally, cases with outliers, defined as data points exceeding 3 times the interquartile 

range (IQR), were removed, as they constituted only 1% of the dataset. 

BMD examination 

Bone mineral density measurements, expressed in grams per square centimeter (gm/cm2), were 

conducted using dual-energy X-ray absorptiometry (DXA) with Hologic QDR 4500A fan-

beam densitometers (Hologic Inc., Bedford, MA, USA) [1, 2]. All measurements were 



 

8 

 

conducted by NHANES radiological technologists, who had undergone extensive training and 

certification. In the present research, FNBMD data were selected as the outcome because the 

femoral neck is often proposed as the reference skeletal site for defining osteoporosis in 

epidemiological research [3]. 

Features 

Based on the literature [4-6], the following features were included: age, body mass index 

(BMI), race, education level, marital status, drinking status, smoking status, physical activity, 

family history of osteoporosis (FHOS), poverty income ratio (PIR), systolic blood pressure 

(SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), fasting plasma glucose 

(FPG), TC, triglycerides, low-density lipoprotein (LDL), serum calcium, serum phosphorus, 

and serum 25-hydroxyvitamin D3 (25(OH)D3). Race was categorized as “Mexican American”, 

“non-Hispanic White”, “non-Hispanic Black”, or “other race”; education level was classified 

as “less than high school”, “high school”, or “college or above”; marital status was divided into 

“married or living with partner” or “single”. Regarding health-related behaviors, smoking 

status was defined based on a lifetime history of smoking at least five packs of cigarettes 

(equivalent to 100 cigarettes), categorized as “yes” for those meeting this criterion and “no” 

for those who smoked fewer than five packs and were currently nonsmoking. Alcohol 

consumption was binary, with individuals drinking at least once a month over the past year 

classified as “yes” and all others as “no”. Family history of osteoporosis was specifically noted 

if a parent had been diagnosed with the condition. Physical activity was quantified in metabolic 
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equivalent hours per week (MET-min/week) of moderate-to-vigorous physical activity, with 

categories set at “less active (< 600 MET min/week)” and “active (≥ 600 MET min/week)” [7]. 

Missing data 

The details of the missing data are presented in Table S1. To enhance statistical power and 

reduce bias, the k-nearest neighbor (KNN) imputation [26] with k equal to 10 was employed 

to address missing values in eligible cases. To assess the imputation effect, we performed 

separate outlier tests on the imputation data and compared them with the raw data to identify 

any between-group differences, as detailed in Table S1. Following the acquisition of the 

qualified interpolated data, we applied Z-score standardization to quantitative features and one-

hot encoding to qualitative features. Then, the data was divided into the training set and test set 

in a ratio of 7:3 for subsequent analysis. 

Feature selection 

We implemented a stringent feature selection process to pinpoint the most pertinent predictors 

for constructing the prediction model, using only the training cohort to prevent data leakage. 

Initially, a pairwise Pearson or Spearman correlation matrix was utilized to evaluate the 

continuous features for collinearity, setting a correlation threshold of r > 0.8. Collinearity, 

which occurs when two or more predictor variables are highly correlated, can obscure the 

unique contribution of each variable to the outcome. Consequently, we selected the most 

readily available variables among the collinear ones for further analysis. Next, we employed a 

two-step approach using both the Boruta algorithm 8 and the least absolute shrinkage and 
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selection operator (LASSO) [9]. We then took the intersection of the predictors identified by 

both algorithms to ensure only the most relevant and robust variables were included in the 

development of our prediction model. This combined methodology aims to enhance the 

model’s accuracy and generalizability while minimizing the risk of overfitting or incorporating 

irrelevant predictors. 

Model development and validation 

Common supervised machine learning algorithms for regression encompass linear models such 

as Linear Regression, foundational tree-based methods like Decision Trees and ensemble-

based Random Forests, Support Vector Machines which excel in complex function mapping 

with kernel function selection, Neural Networks renowned for their adaptability and 

proficiency in managing noisy data, and Gaussian Process Models, prized for their probabilistic 

approach and ability to estimate prediction uncertainty [10]. (1) A linear model, specifically 

Multivariable Linear Regression (MLR), posits a linear relationship between input and output 

variables. It is straightforward and establishes a baseline for comparison. While predicting 

phenomena such as FNBMD might surpass the complexity MLR can handle, it remains an 

excellent benchmark to gauge the degree of enhancement provided by more sophisticated non-

linear machine learning algorithms. (2) Tree-based models such as Decision Tree Regression 

(DTR), Extreme Gradient Boosting Regression (XGBR), Random Forest Regression (RFR), 

and Extra-Trees Regression (ETR) are highly effective in managing complex medical datasets. 

Renowned for their interpretability and capability to process both numerical and categorical 

data, these models excel at identifying non-linear relationships and intricate interactions among 
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variables, making them particularly valuable in health research [11]. (3) Support Vector 

Regression (SVR), a variant of the Support Vector Machine, is frequently selected for its 

effectiveness in high-dimensional spaces. SVR is particularly skilled at navigating the complex 

patterns prevalent in medical datasets, establishing it as a robust choice for intricate data 

analysis [12]. (4) Gaussian Process Regression (GPR), a non-parametric method, is highly 

valued for its ability to provide uncertainty measures alongside predictions. This feature is 

particularly advantageous for analyzing medical data, which often involves considerable 

uncertainty [13]. (5) Multi-layer Perceptron Regression (MLPR), a neural network approach, 

is adept at capturing the intricate and often non-linear patterns found in large health datasets 

[14]. By incorporating a diverse array of machine learning approaches, our study offers a 

comprehensive comparison of FNBMD prediction across various models. 

All models were using “sklearn”, “xgboost”, “numpy”, and “pandas” packages, with grid 

search utilized to optimize the hyperparameters for each model. This method systematically 

explores a broad spectrum of hyperparameter values, enhancing the probability of discovering 

the most effective global solution for all critical parameters. This approach facilitates thorough 

yet efficient tuning, which is particularly advantageous given the limited size of our dataset. 

To assess the effectiveness of the predictive machine learning models, we employed five 

specific metrics for regression issues: R2 (coefficient of determination), MAE (mean absolute 

error), MSE (mean squared error), MAPE (mean absolute percentage error), and RMSE (root 

mean squared error). 
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Model explainability 

Machine learning models often face challenges in terms of explainability, particularly as the 

complexity and accuracy of the models increase, potentially reducing interpretability [15, 16]. 

To address this issue, we utilized SHAP values from the game theory-based “shap” package to 

plot feature importance for global explainability. This approach enhanced our understanding 

of the decision-making processes within the model that demonstrated the best performance 

[16]. 

To ascertain the most critical features for predicting FNBMD, we employed the permutation 

importance method. This technique evaluates feature importance by assessing the impact of 

randomly permuting (shuffling) the values of a feature on the model’s predictive performance. 

To minimize error and stabilize the results, we conducted 1000 permutations for each feature 

across all constructed models, thereby generating 1000 importance values per feature. We then 

calculated the mean of these importance values and ranked the features based on these 

averages. 

Sensitivity analysis 

To ensure the robustness of our main findings, we implemented three sensitivity analyses. 

Firstly, we removed racial features from the optimal model, and then evaluated the new 

model’s performance in both the training and test sets. This was undertaken to develop a model 

independent of racial features, thereby expanding its applicability. Secondly, recognizing the 

documented reliability of the triglyceride blood glucose-body mass index (TyG-BMI) as a 

predictor of BMD [17, 18], we computed this index from imputed data and integrated it into 
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the selected algorithm for comparison with our optimal model. Details on the TyG-BMI 

calculation are provided in the Supplementary Material. Lastly, we conducted restricted cubic 

spline analyses [19] for TyG-BMI and each quantitatively selected feature post-engineering, 

setting five knots at the 5th, 35th, 50th, 65th, and 95th percentiles to flexibly model its 

relationship with FNBMD. This analysis was aimed at verifying the plausibility of the 

interpretations suggested by the SHAP values. 

Sample size calculation 

The R package “pmsampsize,” version 1.1.2, was employed to calculate the required minimum 

sample size for training [20]. We selected 22 candidate predictor parameters to construct a 

multivariable prediction model for the continuous outcome. We based our calculations on the 

assumption that an existing prediction model in the same field has an adjusted R-squared of 

0.8 [6, 17], and that FNBMD values in present population have a mean of 0.81 and a standard 

deviation of 0.13. Consequently, the minimum sample size needed for the training cohort was 

determined to be 256 cases. Additionally, following Richard’s recommendations for external 

validation of a prognostic model [21], we used a confidence interval width of ≤5 for the 

calibration-in-the-large (considered precise on an outcome scale of 0 to 100) and ≤0.3 for the 

calibration slope to calculate the sample size, which indicated a minimum of 235 cases are 

required. This analysis confirms that the eligible population is adequate for both model 

construction and validation. 
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Ethical statement 

According to the Helsinki Declaration of 1975, as revised in 2000, all procedures followed the 

ethics of the responsible committee on human experimentation. All participants gave written 

informed consent to participate in this study that was approved by the Institutional Review 

Board of the National Center for Health Statistics (NHANES). In this study, all methods were 

carried out according to relevant guidelines and regulations. 

Statistical analysis 

Continuous data were evaluated for normality using the Shapiro–Wilk test and presented as 

mean with standard deviation (SD) for normally distributed data, or median with interquartile 

range (IQR) for non-normally distributed data. The outliers were detected by using boxplots 

and Grubbs’ test. The homogeneity of variance across groups was assessed using the Levene 

test. For data following a Gaussian distribution, parametric tests such as the unpaired two-tailed 

Student’s t-test or Welch’s t-test were used for comparisons between two groups. For non-

Gaussian data, the Mann-Whitney U test was employed for two-group comparisons. 

Categorical data were expressed as counts and percentages, and analyzed using the Chi-squared 

test or Fisher’s exact test, the latter being applied when more than 20% of cells had expected 

frequencies less than 5. Statistical significance was determined by a two-sided P value of less 

than 0.05. All statistical analyses were performed using R software, version 4.1.0. 
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RESULTS 

Participant characteristics 

A total of 1,182 eligible participants from the NHANES data collected between January 2005 

and March 2020 were included in the analysis. The exclusion criteria are detailed in Figure 1. 

Missing values were found in BMI, smoking status, drinking status, and nearly all laboratory 

test-related features. Comparative analyses between the raw data and the imputed data showed 

no statistically significant differences (Table S1). No outliers were detected in either the 

complete dataset (data with all missing values removed) or the imputed data.  

In the imputed dataset, the median age of participants was 61 years (IQR, 55–68), and the 

median BMI was 33.4 kg/m2 (IQR, 29.7–36.5). The majority were non-Hispanic White 

(42.8%), had at least a bachelor’s degree (48.5%), were not single (71.3%), and reported 

drinking alcohol (75.9%). The median FNBMD of these participants was 0.80 (IQR, 0.71-

0.89). 

Of all eligible participants, 829 were assigned to the training group and 353 to the test group. 

were similar across both cohorts, with no significant differences (P > 0.05) noted (Table 1). 

The median TyG-BMI values were 228 (IQR, 200-260) for the training group and 231 (IQR, 

206-265) for the test group. The median FNBMD values were consistent across both groups, 

each registering at 0.80 (IQR, 0.71-0.89). 

Feature selection 

As depicted in Figure 2, Pearson correlation values for LDL and TC exceeded 0.8, signaling 

the presence of collinearity. opted to select LDL for the subsequent feature selection phase. 
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The Boruta (Figure 2B) and LASSO (Figures 2D and E) algorithms identified a total of six 

features as significant predictors of the outcome. These encompassed age, BMI, non-Hispanic 

Black, non-Hispanic White, PIR, and serum calcium. The chosen features were then integrated 

into eight machine learning regressors to cultivate predictive models. 

Hyperparameters tuning 

Table S2 lists the optimized hyperparameters for each algorithm. Hyperparameter tuning was 

not conducted on the MLR model, as it does not involve hyperparameters. 

Development and validation of prediction models 

The identified six predictors and optimized hyperparameters were incorporated into the 

FNBMD prediction regressors. Within the training cohort, the RFR model demonstrated 

superior performance, achieving the highest R2 at 0.712, the lowest MSE at 0.005, and a RMSE 

of 0.072. Upon removing the racial features from the model, the performance of the adjusted 

model (referred to as ABPC-RFR, which includes age, BMI, PIR, and serum calcium) 

improved significantly, with R2 rising to 0.841 and reductions in MAE, MSE, MAPE, and 

RMSE reaching the most favorable values of 0.043, 0.003, 0.054, and 0.057, respectively. This 

model outperformed all others, including the TyG-BMI-RFR model, which solely incorporates 

TyG-BMI. In the test cohort, the ABPC-RFR model’s performance was comparable to that of 

the original RFR model, which integrates six features, and it surpassed the performance of all 

other models examined (as detailed in Table 2). 

In Figure 3, the predictive behavior of the models RFR, ABPC-RFR, and TyG-BMI-RFR 

varies with the true value of FNBMD. Specifically, when the true FNBMD value is below 0.8, 
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the predicted values from these models are consistently higher than the actual values. 

Conversely, when the true FNBMD value exceeds 0.8, the predictions fall below the true 

values. This pattern suggests a decline in model performance when predicting extreme values. 

The scatter density plots (Figure 3A, 3C, and 3E) show that the ABPC-RFR model’s fitted line 

deviates the least from the ideal line, signifying it has the best predictive performance among 

the models. Similarly, in the scatter plots for the training set (Figures 3B, 3D, and 3F), the 

ABPC-RFR model again shows the smallest angle of deviation from the perfect line, indicating 

superior performance in the training phase. In the test set, the fitted lines of the RFR and ABPC-

RFR models exhibit similar angles of deviation from the perfect line, suggesting that their 

performance in the test set is comparable. These observations align with the findings presented 

in Table 2. 

Model explainability 

The SHAP summary plot (Figure 4) illustrates the impact of each feature across the RF, ABPC-

RFR, and TyG-BMI-RFR models. SHAP values above zero suggest higher FNBMD values, 

whereas values below zero indicate lower FNBMD values. For instance, a higher BMI 

(depicted in red) correlates with larger SHAP values, suggesting that individuals with a higher 

BMI tend to have greater FNBMD values. Conversely, as age increases, the SHAP values 

typically decrease, indicating an association between advancing age and bone loss. These 

trends are depicted in Figures 5A and 5B. Additionally, a higher TyG-BMI value generally 

results in a larger SHAP value, demonstrating a positive relationship between this index and 

FNBMD (Figure 4C). 
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Permutation feature importance analysis identified the pivotal features for predicting FNBMD. 

To evaluate the relative importance of these features across all eight models, a ranking score 

system was employed. The most critical feature in each model was assigned a ranking of 1, 

with rankings progressively decreasing down to 6 for the least significant variable. As detailed 

in Table 3, BMI emerged as the most influential predictor, achieving a mean ranking of 1.0±0.0 

and a median ranking of 1.0 (IQR, 1.0-1.0). It was followed by non-Hispanic Black, age, PIR, 

serum calcium, and non-Hispanic White in terms of their impact on FNBMD prediction. 

Sensitivity analysis 

In the RCS analysis depicted in Figure 5, age demonstrates a negative linear correlation with 

FNBMD, as evidenced by a non-significance for non-linearity (P = 0.879). Serum calcium 

displays a positive linear relationship with FNBMD (P for non-linear = 0.239). BMI and TyG-

BMI both exhibit positive non-linear associations with FNBMD, with P values for non-

linearity being less than 0.001 and 0.030, respectively. PIR also shows a distinct non-linear 

association with FNBMD (P for non-linear < 0.001). These findings align with the 

interpretations provided by the SHAP values, confirming the consistency of the results across 

different analytical approaches. 

DISCUSSION 

Osteoporotic fractures of the proximal femur significantly impact the health and increase the 

mortality rate among the elderly. Early detection of osteoporosis and the initiation of anti-

osteoporotic treatments are critical in preventing such fractures. The FNBMD is utilized both 

for diagnosing osteoporosis and as a key predictor of OFNFs. However, the methods currently 
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available for assessing FNBMD are not suitable for routine osteoporosis screening. Therefore, 

it is essential to develop a straightforward, cost-effective, and reliable alternative method for 

assessment. In this study, we created and validated a machine learning-based prediction model 

for FNBMD specifically for men aged 50 years and older. Through meticulous feature 

selection, six key predictors were identified: age, BMI, non-Hispanic Black, non-Hispanic 

White, PIR, and serum calcium. Among the eight models evaluated, the RFR model showed 

the best performance across all metrics. When race-related variables were excluded, the 

adjusted RFR model (ABPC-RFR) incorporating the remaining predictors performed 

comparably to the full RFR model and significantly outperformed the TyG-BMI-RFR model. 

The simplified model required only three demographic factors (age, BMI, and PIR) and one 

laboratory test variable (serum calcium) for making predictions. This simplicity enhances its 

usability for routine osteoporosis checks among older men of diverse races, aligning well with 

the study’s hypothesis. 

Our importance analysis revealed that BMI was the most valuable predictor of FNBMD in this 

study population (Table 3). Indeed, BMI is not only a simple and widely used health indicator 

but also a significant predictor of bone tissue structure, closely associated with BMD [22-24]. 

Compared to the BMD of the lumbar vertebral body, FNBMD is more stable and less 

influenced by factors such as degeneration, osteophytes, and sclerosis [25]. Several studies 

have consistently shown a positive correlation between BMI and the absolute values of 

FNBMD, exhibiting a synergistic increasing trend [22-26]. In research involving 900 elderly 

individuals, Asuman et al. [27] confirmed that femoral BMDs increased with rising BMI levels, 
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noting statistically significant differences in femoral BMD among men across different BMI 

categories, with the highest levels observed in the obese group (BMI of 30 kg/m2 and above) 

compared to those with ideal body weight. Similarly, Kirchengast et al. [28] found that BMD 

increased with both weight and BMI in both sexes, with higher BMD values in overweight 

individuals compared to those of ideal body weight, aligning with the findings of our study 

(Figures 5A, 5B, and 6B). Through combining model interpretative analysis with Restricted 

Cubic Spline (RCS) analysis, we observed that changes in FNBMD values with increasing 

BMI were more pronounced when BMI was below 30 and diminished when BMI exceeded 30. 

This pattern may be attributed to both mechanical effects—where heavier loads on the skeleton 

induce bone-specific deformations that stimulate osteoblast activity, enhancing the synthesis 

and expression of osteoblast-related genes, thereby increasing bone density, and enabling the 

skeleton to adapt to applied stress [29, 30] —and hormonal effects due to increased estrogen 

production in adipose tissue. Weight gain and enhanced adipose tissue may promote the 

conversion of androgens to estrogens, improving bone mass in both men and women while 

maintaining healthy levels of insulin and regulatory factors like insulin-like growth factor-1, 

leptin, and lipocalin [25, 31]. These observations suggest potential variations in FNBMD 

between non-obese and obese populations, possibly necessitating distinct diagnostic criteria 

for osteoporosis in each group. Additionally, to address the modifiable factor of BMI, we 

recommend promoting exercise, particularly strength training, to increase lean body mass and 

stimulate bone remodeling to better accommodate loading. However, it is crucial to note that 

while a higher BMI can be protective against osteoporosis, maintaining a BMI around or 
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slightly below 30 is advisable to prevent the increased risks of falls, degenerative changes, and 

systemic diseases associated with obesity in the elderly [25, 27]. 

Age is another important predictor of FNBMD. In this research, we used SHAP values to 

understand the machine learning models (RFR, ABPC-RFR) along with RCS analysis to show 

how age and FNBMD are related. The results showed that age is inversely related to FNBMD, 

i.e., BMD decreases significantly with age. This finding is consistent with the existing literature 

[24, 25]. In a study of adult men in Kosovo, Rexhep et al. [24] identified a negative relationship 

between age and FNBMD, attributing this natural bone mass loss to the aging process. This 

insight is crucial for guiding local BMD assessments and initiating early preventive strategies 

against osteoporosis and related fractures in older men. Similarly, Jiang et al. [25] studied the 

FNBMD of 358 Chinese males aged 50 and older, arriving at the same conclusion. They 

interpreted this trend as a decline in bone mass beginning around the age of 50, due to osteoblast 

dysfunction and an increase in osteoclast resorption. The application of machine learning in 

this research offers a detailed understanding of how age interacts with other factors to influence 

bone health. Importantly, incorporating age as a predictor in our model underscores the 

necessity of early intervention and tailored preventive measures for the elderly. The data-driven 

insights provided by this study showcase the potential of machine learning to enhance 

predictive models for FNBMD, enabling healthcare providers to more effectively identify and 

manage individuals at high risk for osteoporosis. 

The association between the PIR and FNBMD observed in our study adds a critical 

socioeconomic dimension to the understanding of bone health. Our analysis revealed that a 
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higher PIR (≥ 4 in the RCS analysis), indicative of greater socioeconomic status, correlates 

with improved FNBMD. This aligns with research by Du et al. [32], who reported similar 

findings and suggested that individuals with higher socioeconomic status have better access to 

healthcare resources, nutrition, and lifestyle choices conducive to bone health. A meta-analysis 

encompassing eight epidemiological studies demonstrated that most population-based research 

supports the observation that individuals with higher income levels are more likely to exhibit 

higher BMD [33]. This finding was further validated in another cross-sectional study involving 

11,075 representative participants from the United States [34]. The positive impact of 

socioeconomic status on FNBMD emphasizes the potential barriers faced by lower-income 

populations in maintaining bone health, possibly due to limited access to nutritious food, 

healthcare services, and opportunities for physical activity [34]. Addressing these disparities 

could significantly improve bone health outcomes across different population segments. 

Therefore, our findings advocate for targeted public health interventions and policies that 

enhance access to bone health resources in economically disadvantaged communities, 

potentially reducing the prevalence of osteoporosis-related complications. 

Serum calcium, a critical element in bone metabolism, was positively correlated with FNBMD 

in our study, supporting the hypothesis that adequate calcium levels are essential for optimal 

bone density. This observation is in concordance with the work of Pan et al. [35], who noted 

that calcium plays a pivotal role not only in bone formation but also in maintaining the 

structural integrity of the bone matrix. The implications of these findings suggest that 

monitoring and managing serum calcium levels could be a key strategy for preventing bone 
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density deterioration, especially in populations at risk for osteoporosis [36]. Additionally, our 

models reinforce the importance of integrating nutritional and metabolic factors into 

comprehensive assessments of bone health, advocating for a holistic approach to osteoporosis 

prevention and treatment strategies that encompass dietary calcium intake and its metabolic 

management. 

The TyG-BMI, a novel metabolic marker explored in our study, demonstrated a significant 

predictive value for FNBMD. This finding underscores the intertwined roles of metabolic 

health and bone density. Notably, our analysis indicates that higher TyG-BMI values correlate 

with increased FNBMD, suggesting that metabolic efficiency and body composition 

collectively influence bone health. This relationship mirrors the results presented by Zhan et 

al. [37], who found that metabolic markers like the TyG index provide insight into the risk of 

metabolic bone diseases beyond traditional lipid and glucose measurements. The association 

between TyG-BMI and FNBMD enhances our understanding of how composite indices, which 

encapsulate multiple metabolic risks, can serve as effective tools for assessing bone health. 

Emphasizing the TyG-BMI in clinical evaluations could offer a more comprehensive 

assessment strategy, aiding in the early identification of individuals at risk for osteoporosis, 

thus facilitating timely intervention strategies. 

Leveraging demographic (age, BMI, and PIR), laboratory test (serum calcium) characteristics, 

and the novel metabolic index (TyG-BMI) associated with FNBMD, we selected the RFR 

algorithm to construct three models: the RFR, ABPC-RFR, and TyG-BMI-RFR. Among these, 

the ABPC-RFR model emerged as the simplest and most practical. The computation of TyG-
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BMI is relatively cumbersome, and the predictive efficacy based on this index is significantly 

lower compared to the ABPC-RFR model. Furthermore, the fact that race-related 

characteristics do not influence the ABPC-RFR model’s performance suggests that race may 

not be a prominent factor in our specific dataset. These findings indicate that the ABPC-RFR 

model can effectively predict FNBMD in men over 50 years of age and holds potential for 

routine community screening. This facilitates the early detection of osteoporosis and the 

initiation of anti-osteoporosis treatments to prevent OFNFs. It is noteworthy that the present 

study did not encompass races from Asia and other regions. This limitation could influence the 

generalizability of our findings. Future analyses should aim to include more diverse racial 

groups to better understand the impact of race on FNBMD predictions and ensure the model's 

applicability across different populations. 

Our study has several strengths. First, we utilized the large, nationally representative NHANES 

dataset, which provides a diverse and statistically significant sample, enhancing the 

generalizability of our findings. Meticulous data processing techniques were also employed, 

including the handling of outliers and the KNN estimation of missing data, ensuring data 

integrity. Further, our study featured rigorous feature selection and a comprehensive model 

development and validation process. Multiple machine-learning algorithms were utilized to 

pinpoint the best-performing model, optimizing predictive accuracy. Moreover, we 

incorporated various evaluation metrics and model interpretability techniques, such as SHAP 

values, to ensure transparency and facilitate the interpretation of results. Lastly, several 
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sensitivity analyses were conducted to test the robustness of our findings, ensuring the 

reliability of our conclusions in different scenarios and settings. 

The present study has several limitations that warrant consideration. First, the exclusion of 

female participants and certain age groups limits the generalizability of our findings to the 

entire population. Women, particularly post-menopausal women, are at a high risk for 

osteoporosis, and the dynamics of bone mineral density may differ significantly between 

genders. Our study also excluded patients with hypoglycemia, diabetes, and those on 

medications for chronic diseases. These exclusions were made to control for potential 

confounding factors that could introduce bias into the model. However, we recognize that these 

patients represent a significant subset of the population, and their exclusion may limit the 

applicability of our findings to broader populations. Future research should aim to validate our 

models in more diverse populations that include these important subsets to ensure the 

generalizability and robustness of the predictive models and detect changes in the ranking of 

feature importance. Additionally, our reliance on cross-sectional data from the NHANES 

prevents us from establishing causality between the predictors and FNBMD; longitudinal 

studies would be required to confirm the directionality of these associations. Another limitation 

is the potential for residual confounding due to variables not included or not available in the 

NHANES dataset. Lastly, while machine learning models offer potent predictive capabilities, 

generalizing these models to different healthcare settings can be challenging. Future research 

should focus on further validating the model across diverse populations to ensure its broader 

applicability and effectiveness in varying healthcare contexts. 
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CONCLUSION 

In conclusion, our study demonstrates that FNBMD can be easily and accurately assessed by 

integrating four readily accessible features (age, BMI, PIR, and serum calcium) through 

advanced machine learning techniques and outperforms the novel metabolic index (TyG-BMI). 

Our model interpretation results provide a deeper and more nuanced understanding of femoral 

neck bone health risks. These insights pave the way for more targeted and effective 

interventions to prevent and manage OFNFs in the development of femoral neck osteoporosis, 

especially in populations traditionally underrepresented in bone health studies, such as older 

men. Future research should aim to validate these predictive models in a broader range of 

populations to enhance their applicability and effectiveness. By continually refining these 

models and addressing the limitations outlined, we can better meet the healthcare needs of 

diverse populations and improve outcomes in bone health management. 
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TABLES AND FIGURES WITH LEGENDS 

TABLE 1. Baseline characteristics of training and test datasets. 

Characteristics Training set (N = 829) Test set (N = 353) P value 

FNBMD (gm/cm2), median (IQR) 0.80 (0.71, 0.89) 0.80 (0.71, 0.89) 0.725 

TyG-BMI, median (IQR) 228 (200, 260) 231 (206, 265) 0.135 

Age (yrs), median (IQR) 61.0 (55.0, 68.0) 61.0 (55.0, 70.0) 0.225 

BMI (kg/m2), median (IQR) 32.8 (29.7, 36.5) 33.4 (29.9, 36.5) 0.421 

Race, N (%)   0.084 

Mexican American 108 (13.0)    47 (13.3)     

Other Hispanic 93 (11.2)    25 (7.08)     

Non-Hispanic White 353 (42.6)    153 (43.3)     

Non-Hispanic Black 202 (24.4)    83 (23.5)     

    Other race 73 (8.81)    45 (12.7)     

Education, N (%)   0.130 

    Less than high school 227 (27.4)    115 (32.6)     

    High school 197 (23.8)    70 (19.8)     

    College or above 405 (48.9)    168 (47.6)     

Marital status, N (%)   0.114 

    Married or living with partner 580 (70.0)    263 (74.5)     

    Single 249 (30.0)    90 (25.5)     

Drinking status, N (%)   0.447 

    No 205 (24.7)    80 (22.7)     

    Yes 624 (75.3)    273 (77.3)     

Smoking status, N (%)   0.292 

    No 571 (68.9)    254 (72.0)     

    Yes 258 (31.1)    99 (28.0)     

Physical activity, N (%)   0.779 

    Less active 369 (44.5)    154 (43.6)     

    Active 460 (55.5)    199 (56.4)     

FHOS, N (%)   0.367 

    No 765 (92.3)    331 (93.8)     

    Yes 64 (7.72)    22 (6.23)     

PIR, median (IQR) 2.70 (1.40, 4.28) 2.59 (1.35, 4.04) 0.364 

SBP (mmHg), median (IQR) 127 (117, 139)   128 (119, 139)   0.598 

DBP (mmHg), median (IQR) 74.0 (67.0, 80.0) 74.0 (67.0, 81.0) 0.71 

HDL (mmol/L), median (IQR) 1.29 (1.09, 1.55) 1.29 (1.09, 1.60) 0.751 

FPG (mmol/L), median (IQR) 5.66 (5.33, 6.05) 5.77 (5.38, 6.11) 0.171 

TC (mmol/L), median (IQR) 4.99 (4.40, 5.61) 4.97 (4.32, 5.56) 0.323 

Triglycerides (mmol/L), median (IQR) 1.09 (0.81, 1.43) 1.09 (0.79, 1.46) 0.522 

LDL (mmol/L), median (IQR) 3.10 (2.53, 3.60) 3.03 (2.46, 3.60) 0.346 

Serum calcium (mmol/L), median (IQR) 2.33 (2.28, 2.38) 2.33 (2.28, 2.38) 0.609 
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Serum phosphorus (mmol/L), median (IQR) 1.10 (1.00, 1.20) 1.07 (0.97, 1.16) 0.565 

Serum 25(OH)D3 (ng/mL), median (IQR) 59.7 (52.4, 67.6) 58.9 (51.0, 67.0) 0.253 

P values between groups were assessed by the Chi-square and Mann–Whitney U tests. IQR: 

Inter-quartile range; FNBMD: Femoral neck bone mineral density; TyG-BMI: Triglyceride and 

glucose-body mass index; FHOS: Family history of osteoporosis; PIR: Poverty income ratio; 

SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HDL: High-density lipoprotein; 

FPG: Fasting plasma glucose; TC: Total cholesterol; LDL: Low-density lipoprotein. 
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TABLE 2. FNBMD prediction results for each model with metrics. 

Model 
R2   MAE   MSE   MAPE   RMSE  

Training Test  Training Test  Training Test  Training Test  Training Test 

MLR 0.264 0.168  0.092 0.095  0.014 0.014  0.116 0.121  0.116 0.120 

DTR 0.252 0.150  0.092 0.095  0.014 0.015  0.117 0.121  0.117 0.121 

SVR 0.298 0.204  0.090 0.093  0.013 0.014  0.114 0.119  0.114 0.117 

GPR 0.691 0.099  0.058 0.106  0.006 0.019  0.072 0.134  0.075 0.138 

XGBR 0.174 0.115  0.096 0.097  0.015 0.015  0.119 0.123  0.123 0.123 

RFR
a
 0.712 0.218  0.053 0.092  0.005 0.013  0.067 0.118  0.072 0.116 

RFR
b
 0.821 0.199  0.043 0.092  0.003 0.014  0.054 0.119  0.057 0.117 

RFR
c
 0.158 0.073  0.097 0.100  0.015 0.017  0.124 0.127  0.123 0.130 

ETR 0.708 0.212  0.052 0.093  0.005 0.014  0.064 0.118  0.073 0.117 

MLPR 0.135 0.094  0.098 0.097  0.016 0.016  0.119 0.119  0.126 0.125 

Note: The metrics of the best-performing model are bolded. a The model included predictors of 

age, BMI, PIR, non-Hispanic Black, non-Hispanic White, and serum calcium. b The model 

included predictors of age, BMI, PIR, and serum calcium. c The model employed TyG-BMI as 

a predictor. FNBMD: Femoral neck bone mineral density; R2: Coefficient of determination; 

MAE: Mean absolute error; MSE: Mean squared error; MAPE: Mean absolute percentage 

error; RMSE: Root mean squared error; MLR: Multivariable linear regression; DTR: Decision 

tree regression; SVR: Support vector regression; GPR: Gaussian process regression; XGBR: 

Extreme gradient boosting regression; RFR: Random forest regression; ETR: Extra-trees 

regression; MLPR: Multi-layer perceptron regression; TyG-BMI: Triglyceride and glucose-

body mass index. 
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TABLE 3. Predictor importance ranking in each model. 

Model 
BMI  Non-Hispanic Black  Age   PIR  Serum calcium  Non-Hispanic White 

Training Test  Training Test  Training Test  Training Test  Training Test  Training Test 

MLR 1 1  2 2  3 3  6 4  4 5  5 6 

DTR 1 1  2 2  3 3  4 4  5 5  6 6 

SVR 1 1  2 2  3 3  5 4  4 5  6 6 

GPR 1 1  6 5  2 2  4 3  3 6  5 4 

XGBR 1 1  3 2  2 3  5 5  6 6  4 4 

RFR 1 1  2 2  3 3  4 4  5 5  6 6 

ETR 1 1  2 2  3 3  4 4  5 5  6 6 

MLPR 1 1  2 3  3 4  4 2  6 6  5 5 

Mean±SD 1.0±0.0 1.0±0.0  2.6±1.4 2.5±1.1  2.8±0.5 3.0±0.5  4.5±0.8 3.8±0.9  4.8±1.0 5.4±0.5  5.4±0.7 5.4±0.9 

Median (IQR) 1.0(1.0, 1.0) 1.0(1.0, 1.0)  2.0(2.0, 2.3)  2.0(2.0, 2.3)  3.0(2.8, 3.0) 3.0(3.0, 3.0)  4.0(4.0, 5.0) 4.0(3.8, 4.0)  5.0(4.0, 5.3) 5.0(5.0, 6.0)  5.5(5.0, 6.0) 6.0(4.8, 6.0) 

BMI: Body mass index; PIR: Family income to poverty ratio; MLR: Multivariable linear regression; DTR: Decision tree regression; SVR: Support 

vector regression; GPR: Gaussian process regression; XGBR: Extreme gradient boosting regression; RFR: Random forest regression; ETR: Extra-

trees regression; MLPR: Multi-layer perceptron regression; SD: Standard deviation; IQR: Inter-quartile range. 
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FIGURE 1. Flow chart of the study design. NHANES: National health and nutrition examination 

survey; KNN: K-nearest neighbors; MLR: Multivariable linear regression; DTR: Decision tree 

regression; SVR: Support vector regression; GPR: Gaussian process regression; XGBR: Extreme 

gradient boosting regression; RFR: Random forest regression; ETR: Extra-trees regression; MLPR: 

Multi-layer perceptron regression; R2: Coefficient of determination; MAE: Mean absolute error; 

MSE: Mean squared error; MAPE: Mean absolute percentage error; RMSE: Root mean squared error; 

TyG-BMI: Triglyceride and glucose-body mass index; PIR: Poverty income ratio; LASSO: Least 

absolute shrinkage and selection operator; RCS: Restricted cubic spline. 
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FIGURE 2. Feature engineering. (A) Spearman or Pearson correlation matrix of continuous 

variables. Feature pairs with correlation coefficients greater than 0.8 have been bolded. (B) Feature 

selection with the Boruta algorithm. The features highlighted in bold and color are identified by 

intersecting the results from the Boruta and LASSO algorithms. (C-D) feature selection was done by 

using the LASSO algorithm. HDL, high-density lipoprotein; PIR, poverty income ratio; SBP, systolic 

blood pressure; DBP, diastolic blood pressure; BMI, body mass index; FPG, fasting plasma glucose; 

TC, total cholesterol; LDL, low-density lipoprotein. 
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FIGURE 3. Scatter plots for FNBMD prediction in RFRs. (A-B) scatter density plots (left) and 

scatter training/test plots (right) for the RFR model, incorporating age, BMI, non-Hispanic Blank and 

White, PIR, and serum calcium. (C-D) plots for the RFR model including age, BMI, PIR, and serum 

calcium. (E-F) plots for the RFR model solely containing the TyG-BMI index. Scatter density plots 

comprise all data points, whereas the scatter plots are separately composed of training and test sets. 

FNBMD, femoral neck bone mineral density; RFR, random forest regressor; BMI, body mass index; 

PIR, poverty income ratio; TyG-BMI, triglyceride and glucose-body mass index. 
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FIGURE 4. SHAP value of features and the impact on the model output for FNBMD prediction 

in RFRs. (A) plots for the RFR model, incorporating age, BMI, non-Hispanic Blank and White, PIR, 

and serum calcium. (B) plots for the RFR model including age, BMI, PIR, and serum calcium. (C) 

plots for the RFR model solely containing the TyG-BMI index. SHAP, shapley additive exPlanations; 

FNBMD, femoral neck bone mineral density; BMI, body mass index; PIR, poverty income ratio; 

TyG-BMI, triglyceride and glucose-body mass index. 
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FIGURE 5. Restricted cubic spline analysis. (A-E) association between continuous features and 

FNBMD. Each curve employs five knots located at the 5th, 35th, 50th, 65th, and 95th percentiles. 

Shaded regions denote the 95% confidence intervals. FNBMD, femoral neck bone mineral density; 

BMI, body mass index; PIR, poverty income ratio; TyG-BMI, triglyceride and glucose-body mass 

index. 

  



 

44 

 

SUPPLEMENTAL DATA 

Data S1. Triglyceride and glucose-body mass index (TyG-BMI) 

Body Mass Index (BMI) was calculated using the formula weight divided by the square of 

height (weight/height2). After an overnight fast, venous samples were collected using aseptic 

techniques for the analysis of phosphorus, total calcium, plasma glucose, and lipid levels. 

The definitions of the TyG-BMI terms were determined as follows: 

1. The TyG index was calculated using the formula: Ln [triglycerides (TG) in mg/dL × fasting 

plasma glucose (FPG) in mg/dL / 2]. 

2. TyG-BMI was derived by multiplying the TyG index by BMI, expressed in kg/m2. 
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TABLE S1. Comparisons between raw and imputation datasets. 
 

Characteristics Missing values 

N (%) 

Raw dataset 

(N = 1182) 

Imputation dataset 

(N = 1182) 

P 

value 

FNBMD (gm/cm2), median (IQR)  0.80 (0.71, 0.89) 0.80 (0.71, 0.89) 1.000 

Age (yrs), median (IQR)  61.0 (55.0, 68.0) 61.0 (55.0, 68.0) 1.000 

BMI (kg/m2), median (IQR) 20 (1.7) 32.8 (29.7, 36.6) 33.4 (29.7, 36.5) 0.917 

Race, N (%)    1.000 

Mexican American  155 (13.1)    155 (13.1)     

Other Hispanic  118 (10.0)    118 (10.0)     

Non-Hispanic White  506 (42.8)    506 (42.8)     

Non-Hispanic Black  285 (24.1)    285 (24.1)     

    Other race  118 (10.0)    118 (10.0)     

Education, N (%)    1.000 

    Less than high school  342 (28.9)    342 (28.9)     

    High school  267 (22.6)    267 (22.6)     

    College or above  573 (48.5)    573 (48.5)     

Marital status, N (%)    1.000 

    Married or living with partner  843 (71.3)    843 (71.3)     

    Single  339 (28.7)    339 (28.7)     

Drinking status, N (%) 276 (23.4)   0.365 

    No  235 (25.9)    285 (24.1)     

    Yes  671 (74.1)    897 (75.9)     

Smoking status, N (%) 426 (36.0)   0.056 

    No  487 (64.4)    825 (69.8)     

    Yes  269 (35.6)    357 (30.2)     

Physical activity, N (%)    1.000 

    Less active  523 (44.2)    523 (44.2)     

    Active  659 (55.8)    659 (55.8)     

FHOS, N (%)    1.000 

    No  1096 (92.7)    1096 (92.7)     

    Yes  86 (7.28)    86 (7.28)     

PIR, median (IQR) 118 (10.0) 2.44 (1.29, 4.42) 2.64 (1.39, 4.21) 0.355 

SBP (mmHg), median (IQR)  127.0 (117.0, 140.0)   127.0 (117.0, 139.0)   0.745 

DBP (mmHg), median (IQR) 70 (5.9) 74.0 (67.0, 81.0) 74.0 (67.0, 80.8) 0.979 

HDL (mmol/L), median (IQR) 24 (2.0) 1.29 (1.09, 1.55) 1.29 (1.09, 1.55) 0.670 

FPG (mmol/L), median (IQR) 4 (0.3) 5.72 (5.33, 6.11) 5.72 (5.33, 6.11) 0.947 

TC (mmol/L), median (IQR) (1.4) 4.97 (4.37, 5.61) 4.97 (4.37, 5.61) 0.847 

Triglycerides (mmol/L), median (IQR) 67 (5.7) 1.07 (0.79, 1.45) 1.09 (0.80, 1.44) 0.404 

LDL (mmol/L), median (IQR) 21 (1.8) 3.08 (2.51, 3.60) 3.08 (2.51, 3.60) 0.764 

Serum calcium (mmol/L), median (IQR) 28 (2.4) 2.33 (2.28, 2.38) 2.33 (2.28, 2.38) 0.985 

Serum phosphorus (mmol/L), median (IQR) 14 (1.2) 1.07 (1.00, 1.20) 1.07 (1.00, 1.18) 0.986 

Serum 25(OH)D3 (ng/mL), median (IQR) 668 (56.5) 59.3 (42.0, 75.1) 59.4 (51.9, 67.5) 0.545 

P values between groups were assessed by the Chi-square and Mann–Whitney U tests. IQR, 

inter-quartile range; FNBMD, femoral neck bone mineral density; BMI, body mass index; 

FHOS, family history of osteoporosis; PIR, poverty income ratio; SBP, systolic blood 

pressure; DBP, diastolic blood pressure; HDL, high-density lipoprotein; FPG, fasting plasma 

glucose; TC, Total cholesterol; LDL, low-density lipoprotein. 
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TABLE S2. Optimization of hyperparameters using grid search. 

Model Hyperparameter Range of hyperparameter in grid search Selected value 

MLR - - - 

DTR max_depth 50, 200, 500, 800, 1000, 1200 1000 

 min_samples_split 2, 10, 18, 26, 34, 42 10 

 min_samples_leaf 3, 11, 19, 27, 35, 43 43 

 max_features 0.8, 0.9, 1.0 0.8 

SVR gamma 10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 100 10-1 

 C 10-3, 10-2, 10-1, 100, 101, 102, 103, 104 10-1 

 epsilon 10-3, 10-2, 10-1, 100, 101, 102 10-1 

GPR alpha 10-10, 10-9, 10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 100, 101 10-1 

XGBR n_estimators 100, 200, 400 100 

 max_depth 3, 5, 7, 10 7 

 learning_rate 0.1, 0.2, 0.3 0.3 

 gamma 0, 5, 10, 20 0 

 reg_alpha 5, 10, 15 5 

RFRa n_estimators 100, 200, 400 100 

 criterion 'squared_error', 'absolute_error', 'poisson' 'absolute_error' 

 max_depth 10, 50, 100, 200, 400 100 

 min_samples_split 2, 4, 8, 16 2 

 min_samples_leaf 1, 2, 4, 8 2 

 max_features 0.8, 0.9, 1.0 0.8 

RFRb n_estimators 100, 200, 400 200 

 criterion 'squared_error', 'absolute_error', 'poisson' 'absolute_error' 

 max_depth 10, 50, 100, 200, 400 400 

 min_samples_split 2, 4, 8, 16 4 

 min_samples_leaf 1, 2, 4, 8 1 

 max_features 0.8, 0.9, 1.0 0.9 

RFRc n_estimators 100, 200, 400 100 

 criterion 'squared_error', 'absolute_error', 'poisson' 'poisson' 

 max_depth 10, 50, 100, 200, 400 10 

 min_samples_split 2, 4, 8, 16 8 

 min_samples_leaf 1, 2, 4, 8 2 

 max_features 0.8, 0.9, 1.0 0.9 

ETR n_estimators 100, 200, 400 200 

 criterion 'squared_error', 'absolute_error' 'absolute_error' 

 max_depth 10, 50, 100 100 

 min_samples_split 2, 4, 8, 16 2 

 min_samples_leaf 1, 2, 4, 8 1 

 max_features 0.6, 0.8, 1.0 0.8 

 max_samples 0.8, 0.9, 1.0 1.0 

 ccp_alpha 0, 1, 10, 100, 1000 0 

MLPR hidden_layer_sizes (10,), (20,), (10, 10), (20, 20), (10, 20, 10) (10, 10) 

 activation 'identity', 'tanh', 'relu' 'identity' 

 solver 'sgd', 'adam' 'adam' 

 alpha 10-4, 10-3, 10-2, 10-1 10-2 

 learning_rate 'constant', 'adaptive' 'constant' 

 learning_rate_int 10-3, 10-2, 10-1 10-1 

a The model included predictors of age, BMI, PIR, non-Hispanic Black, non-Hispanic White, 

and serum calcium. b The model included predictors of age, BMI, PIR, and serum calcium. c 

The model employed TyG-BMI as a predictor. MLR, multivariable linear regression; DTR, 

decision tree regression; SVR, support vector regression; GPR, gaussian process regression; 

XGBR, extreme gradient boosting regression; RFR, random forest regression; ETR, extra-

trees regression; MLPR, multi-layer perceptron regression; TyG-BMI, triglyceride and 
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glucose-body mass index. 


