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R E S E A R C H A R T I C L E

Cuproptosis-related gene ATOX1 promotes MAPK
signaling and diffuse large B-cell lymphoma proliferation
via modulating copper transport
Junjie Xie1#, Zhixiong Shao1#, Changjie Li2, Cheng Zeng1∗ , and Biao Xu3∗

Diffuse large B-cell lymphoma (DLBCL) is a common subtype of non-Hodgkin lymphoma (NHL), highlighting the importance of studying
susceptibility genes to develop personalized treatment strategies. While cuproptosis, caused by high levels of copper ions induced by
ionophores, has been shown to affect cancer survival, its specific role in lymphoma is not yet clear. To investigate the involvement of
upregulation-related genes in DLBCL, we employed bioinformatics techniques. Specifically, we analyzed the differentially expressed
genes (DEGs) in the GSE25638 dataset using weighted gene co-expression network analysis (WGCNA) and performed functional
enrichment analysis. By building a protein–protein interaction (PPI) network, candidate genes were identified. Gene set enrichment
analysis (GSEA) and receiver operating characteristic (ROC) curve analysis were used to confirm the clinical diagnostic use of these
genes. The effects of antioxidant 1 (ATOX1) knockdown, CuCl2, and DCAC50 knockdown on DLBCL cells and the activation of the
mitogen-activated protein kinase (MAPK) pathway were investigated by conducting in vitro experiments. Bioinformatics and in vitro
experiments confirmed elevated expression of ATOX1 in DLBCL cells and tumor samples. ATOX1 knockdown led to decreased cell
proliferation and G2 cell cycle arrest in vitro. Additionally, phosphorylated extracellular signal-regulated kinases 1 and 2 (P-ERK1/2)
protein levels within the MAPK pathway were reduced as a result of ATOX1 knockdown, but these levels were recovered by CuCl2.
Treatment with DCAC50 showed a dose-dependent antiproliferative effect in DLBCL cells, which was strengthened by ATOX1
knockdown. Our study demonstrated that ATOX1 may be important in DLBCL via controlling the MAPK pathway through copper
transport, providing new insights into potential therapeutic strategies for DLBCL.
Keywords: Diffuse large B-cell lymphoma (DLBCL), cuproptosis, antioxidant 1 (ATOX1), proliferation, copper transport.

Introduction
Lymphomas are a class of cancerous tumors that develop from
lymph nodes or other lymphoid tissues [1]. These tumors are
classified into two main types: non-Hodgkin lymphoma (NHL)
and Hodgkin lymphoma (HL) [2, 3]. Diffuse large B-cell lym-
phoma (DLBCL), which makes up around 40% of all B-cell lym-
phomas, is the most common kind of NHL among them [4].
The most typical clinical pathological features of lymphoma
are painless lymphadenopathy, hepatosplenomegaly, cachexia,
fever, anemia, and swollen lymph nodes, which can become
painful soon after drinking alcohol [5, 6]. Studies have shown
that immunocompromise, genetics, smoking, and infectious
factors, such as Epstein–Barr (EB) virus infection, retrovirus,
human herpes virus, measles virus, and Helicobacter pylori
infection are all risks of lymphoma [7, 8]. Due to the high het-
erogeneity of lymphoma, the treatment effect varies widely,
and the prognosis of patients is often related to different

pathological types and stages. Therefore, exploring the suscep-
tibility genes of lymphoma based on molecular biology is of
much significance for clinical diagnosis and the development of
individualized treatment plans.

Copper can induce a new mode of cell death called
copper-dependent apoptosis (cuproptosis), which is associated
with excessive copper ion concentrations [9]. Copper is an
essential micronutrient that is required for various physio-
logical processes in almost all cell types. However, excessive
accumulation of intracellular copper induces oxidative stress
and disrupts cellular function, so copper homeostasis is
tightly regulated. Recent studies have identified a new form
of copper-dependent cell death, which is distinct from all
other known cell death pathways. Copper-dependent apop-
tosis occurs through the binding of copper to the enzyme
thioctanoylase in the tricarboxylic acid (TCA) cycle, which
leads to subsequent protein aggregation, proteotoxic stress,
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and ultimately cell death [10]. During this process, copper
ionophore is a small molecule that can bind with copper and
transport it into cells, and some copper ionophores are even
used for cancer treatment [11, 12]. It has been demonstrated
that cuprotosis affects the survival prognosis in a number
of malignancies. One of the important regulators, FDX1, has
been demonstrated to be substantially downregulated in
hepatocellular carcinoma (HCC), higher expression of this gene
is associated with a longer survival period [13]. Cuproptosis
is a newly identified form of copper-driven cell death that
has attracted much attention in recent years in the study
of cancer pathogenesis. Due to the important role of copper
and its triggered cell death in tumorigenesis, copper-based
therapies show the potential to inhibit tumor growth, especially
in response to tumors that are insensitive to chemotherapy and
may offer new strategies for cancer treatment [14]. However,
it is still necessary to investigate the mechanism by which
cuprotosis genes cause lymphoma.

The mitogen-activated protein kinase (MAPK) cascade is
a key signaling pathway that regulates a variety of cellular
processes, including proliferation, differentiation, apoptosis,
and stress responses. The MAPK pathway consists of three
major kinases: the MAPK kinase kinase, the MAPK kinase,
and the MAPK, which activate and phosphorylate downstream
proteins sequentially [15]. Activation of the mitogenic signal-
ing pathway is a common oncogenic driver of many solid
tumors, recent study has shown that selective inhibition of
the MAPK pathway can suppress ASCL1-driven small cell
lung cancer [16]. In addition, recent sequencing and tran-
scriptomics studies have demonstrated the important contri-
bution of the RAS-MAPK pathway to the development and
progression of neuroblastoma [17]. The MAPK pathway plays
a key role in oxidative stress, while AMPK acts as a sen-
sor of cellular energy and participates in the regulation of
energy stress response. Activation of AMPK not only induces
autophagy-dependent iron death but also activates iron death
via p53, which provides a new direction for the future study
of the mechanism of iron death and brings a new vision for
cancer treatment strategies [18]. In addition, it was found
that cadmium induced apoptosis and mitochondrial damage
in human bronchial epithelial cells (BEAS-2B) through the
MAPK signaling pathway [19]. These studies showed that
the MAPK pathway has an important regulatory role in a
variety of cellular activities and disease processes, providing
new potential targets for the treatment of cancer and other
diseases.

In this study, we employed bioinformatics approaches to
analyze the GSE25638 dataset using 129 cuproptosis-related
genes obtained from the MSigDB, which is part of the gene set
enrichment analysis (GSEA) platform, identifying ATOX1 as the
pivotal cuproptosis-related gene. Subsequently, we explored
the regulatory interactions between ATOX1 and the MAPK path-
way in DLBCL cells using in vitro experiments. We also assessed
the impact of CuCl2 and DCAC50 treatments on DLBCL cell
growth and the MAPK signaling pathway. Through these inves-
tigations, we aim to offer novel insights into therapeutic strate-
gies for DLBCL management.

Materials and methods
Acquisition and analysis of the GSE25638 dataset
The Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) provided the DLBCL-related GSE25638
dataset, which included 97 samples in total. Of these, 13 normal
B cell purified subpopulation samples and 26 DLBCL samples
were used for the investigation. The selection of the 13 normal B
cell subpopulation samples was made to represent the diversity
of normal B cells, while the choice of 26 DLBCL samples aimed
to cover the different subtypes or characteristics of DLBCL. It
should be noted that this investigation did not include valida-
tion of the findings using an independent cohort. Differentially
expressed genes (DEGs) that were upregulated and downreg-
ulated were screened using the GEO2R program (specifically,
13 normal B cell purified subpopulation samples and 26 DLBCL
samples). The criteria were log2 fold change (log2FC)>1 for
upregulation and <−1 for downregulation, both with P < 0.05.

Weighted gene co-expression network analysis (WGCNA)
To find the optimal soft threshold, a gene co-expression net-
work based on the DEGs screened in the GSE25638 dataset
was constructed using the WGCNA method (signed hybrid).
The genes were then separated into modules of various colors.
The key module was determined by comparing the correla-
tion between the modules and the two sets of samples in the
GSE25638 dataset, generating the cluster dendrogram between
the modules and the feature gene adjacency heatmap between
the modules. In order to further determine the key modules
related to DLBCL, the relationship between module eigengenes
(MEs) and samples was calculated by the Pearson correlation
coefficient.

Enrichment analysis of genes in the turquoise module
To visualize the gene expression patterns of the turquoise mod-
ule, a heatmap was generated depicting the expression lev-
els of genes within this module. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID; https://david.
ncifcrf.gov/tools.jsp) was used to analyze key modules. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database and the Gene Ontology (GO) categorization, which
includes biological processes (BPs), cellular components (CCs),
and molecular functions (MFs), were both employed in the
enrichment study. When P < 0.05, the obtained enrichment
results were considered statistically significant.

Protein–protein interaction (PPI) networks of
cuproptosis-related genes
By utilizing GSEA (https://www.gsea-msigdb.org), we iden-
tified these genes associated with cuproptosis. Subsequently,
using the R software package “VennDiagram,” we identi-
fied genes common to the turquoise module, which exhib-
ited the strongest correlation with the samples, and a set of
129 cuproptosis-related genes. These overlapping genes were
then uploaded to the STRING database (https://string-db.org/)
to obtain interaction information. The resulting data were
visualized using Cytoscape software to construct and visu-
alize the PPI network. To prioritize genes within this net-
work, the Cytohubba plug-in in Cytoscape was employed,
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applying the MCC, BottleNeck, and Degree algorithms sep-
arately to the overlapping genes. Detailed steps involved
accessing the STRING database online to download files com-
patible with Cytoscape for further analysis (separately access
the STRING database online and download files to open them
using Cytoscape). Only the top ten genes in each subnetwork
were then chosen, and candidate genes were once more found
using the “VennDiagram” package of R software.

Functional enrichment and diagnostic potential of candidate
genes in DLBCL
To delineate the functional significance of the six candidate
genes, we performed a GSEA single-gene Wikipathway enrich-
ment analysis, selecting outcomes with a significance threshold
set at P < 0.05. After that, receiver operating characteristic
(ROC) curves were drawn for these genes using the R software’s
“timeROC” function. The area under the curve (AUC) values
obtained from the ROC analyses were used to critically evaluate
the diagnostic predictive accuracy of these genes. Moreover,
the Gene Expression Profiling Interactive Analysis2 (GEPIA2;
http://gepia2.cancer-pku.cn) database was used to examine the
expression profile of ATOX1 (key gene) in DLBCL.

Cell culture, treatment, and transfection
From the American Type Culture Collection (ATCC), we
obtained three DLBCL cell lines (OCI-LY7, DB, and U2932)
as well as the B-lymphocyte cell line (HCC38BL). The RPMI
1640 medium with 10% fetal bovine serum (FBS, Gibco) and 1%
penicillin–streptomycin solution (Solarbio, China) was used to
cultivate these cells. The cells were maintained at 37 °C and 95%
relative humidity in a humidified environment with 5% CO2.
10 μM CuCl2 and various concentrations of DCAC50 (a newly
discovered small molecule inhibitor of the intracellular copper
chaperones ATOX1) (1, 2.5, 5, 10, 15, and 20 μM) were applied
to the DB and U2932 cell lines (high ATOX1 expression), respec-
tively. Two different small interfering RNAs (siRNAs), denoted
as si-ATOX1 #1 and si-ATOX1 #2, were used to knock down
ATOX1 expression in gene silencing assays. Transfections were
carried out using the Lipo2000 reagent (Polyplus Transfection,
France), following the manufacturer’s instructions. The control
group consisted of cells transfected with non-targeting control
siRNA, often referred to as si-negative control (NC).

Quantitative reverse transcription polymerase chain reaction
(qRT-PCR) assay
With the use of the cDNA synthesis kit (DBI, Germany) and Tri-
zol reagent (Invitrogen, USA), we were able to extract the RNA
from transfected cells and perform reverse transcription. SYBR
Green Master Mix (Applied Biosystems, USA) was used for qRT-
PCR, which was carried out using an AB Fast 7500 real-time
apparatus. For amplification, the primer sequences listed in the
Table S1 were used. After standardizing the expression levels
against the internal reference GAPDH [20], the relative gene
expression levels of ATOX1 were calculated using the 2−ΔΔCt

approach.

Western blotting (WB) assay
Protease and phosphatase inhibitors (Roche) were added to
RIPA lysis buffer (Beyotime Biotechnology) to aid in the

extraction of proteins from transfected cells. The BCA pro-
tein assay kit (Thermo Fisher Scientific) was used to mea-
sure the concentrations of proteins. Using SDS-PAGE, proteins
were divided into equal portions and then transferred to Mil-
lipore PVDF membranes. Next, primary antibodies (1:1000,
Abcam, USA) and GAPDH (1:5000, Abcam, USA) were probed
overnight at 4 °C on the membrane. The primary antibod-
ies included ATOX1, p27, Cyclin B1, P-MEK1/2, T-ERK1/2,
T-MEK1/2, P-MEK1/2, T-p38, P-p38, T-JNK, and P-JNK. After
washing, the membrane was incubated for an hour at room tem-
perature with an HRP-conjugated secondary antibody (1:5000,
Abcam, USA). Enhanced chemiluminescence (ECL) substrates
from Bio-Rad were visualized to identify protein bands, the
ChemiDoc™ Imaging System from the same manufacturer was
utilized to detect the bands.

Flow cytometry
Flow cytometry was used to evaluate the cell cycle distribution
in DLBCL cells. Propidium iodide (PI) staining was applied to
cells by a standard protocol, the cells were then analyzed using
a BD FACSCanto II flow cytometer. Data interpretation and
cell cycle phase quantification were executed using appropriate
analytical software.

Cell Counting Kit-8 (CCK-8)
The CCK-8 kit (Qihai Biotechnology, China) was used to test
cell proliferation. 96-well plates were used to cultivate the
transfected and DCAC50-treated cells after incubating them in
CCK-8 solution for two to four hours at 37 °C. The absorbance
(OD) of each well was measured at 450 nm after 24, 48, and 72 h
of incubation.

Statistical analysis
The data was analyzed using GraphPad Prism (version 9.0.0,
GraphPad Software, USA). All experiments were repeated at
least three times and data are presented as mean ± standard
error. To establish statistical significance, the student’s t-test or
one-way analysis of variance (ANOVA) were performed, then
the post hoc Tukey multiple comparison test was used to assess
the results. The statistically significant result was defined as
P < 0.05.

Results
Screening of DEGs in DLBCL and identification of the turquoise
module
We utilized the GEO2R tool from the GSE25638 dataset to detect
1608 upregulated and 324 downregulated DEGs (Figure 1A). By
applying the WGCNA algorithm with a soft threshold of 14,
we constructed a gene co-expression network for these DEGs
(Figure 1B). Next, we classified the genes into distinct color
modules based on their expression levels, depicted in Figure 1C
and 1D. Evaluating the correlation between the DLBCL and nor-
mal samples, we observed a significant relationship (correlation
coefficient of 0.888) between the turquoise module and the
samples (P value 4.4e-14) (Figure 1E and 1F). As a result, we
identified the turquoise module as the pivotal module.
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Functional enrichment analysis reveals key BPs and pathways
of turquoise module
The turquoise module had a total of 942 genes (Figure 2A),
which were subjected to GO and KEGG pathway enrichment
analysis. As shown in Figure 2B–2D, the enriched terms of
these DEGs in BP, CC, and MF included, e.g., Neutrophil
degranulation, Neutrophil-mediated immunity, Endoplas-
mic reticulum lumen, and Metal ion binding. Furthermore,
KEGG pathways, such as Malaria, cytokine–cytokine recep-
tor interaction, focal adhesion, complement and coagula-
tion cascades, and lysosome were enriched in these DEGs
(Figure 2E).

Turquoise module and cuproptosis-related genes revealed six
candidates through the PPI network
We identified 24 overlapping genes from a pool of 942
GSE25638-DEGs and 129 cuproptosis-related genes. These
genes formed a PPI network consisting of 24 nodes and
37 edges (Figure 2F and 2G). The Cytohubba plug-in in the
Cytoscape program was then utilized to generate three
sub-networks using the MCC, BottleNeck, and Degree algo-
rithms (Figure 2H–2J). By comparing the results from these
three topological analysis methods using Venn diagrams, six
central candidate genes were identified (Figure 2K).

ATOX1 was the hub gene related to cuproptosis in DLBCL
GSEA was performed using Wikipathway module/category
on six genes, each gene was enriched with two pathways
(Figure 3A–3F). GSEA showed MT1H enrichment in Vitamin
B12 metabolism and physiological and pathological hypertro-
phy of the heart pathways (Figure 3A), MT1X was enriched
in Copper homeostasis and Urea cycle and association path-
ways (Figure 3B), MT2A showed enrichment in Vitamin
B12 metabolism and Folate metabolism pathways (Figure 3C),
ATOX1 was enriched in Pathways of nucleic acid metabolism
and Sphingolipid integrated pathway (Figure 3D), CP showed
enrichment in Tumor suppressor activity of smarcb1 and EDA
signaling in hair follicle development pathways (Figure 3E),
SLC11A2 was enriched in apoptosis-related network due to
altered notch3 in ovarian cancer and Fatty acid biosynthesis
pathways (Figure 3F). Then in ROC curve analysis (all patients),
ATOX1 had the highest AUC value of 0.999 (Figure 3G), indi-
cating that it had the strongest predictive ability for DLBCL
patients, followed by CP (Figure 3H, AUC = 0.941), MT2A
(Figure 3I, AUC = 0.934), MT1X (Figure 3J, AUC = 0.925), MT1H
(Figure 3K, AUC = 0.850). These findings showed that ATOX1,
CP, MT2A, MT1X, and MT1H could be the diagnostic biomarkers
for DLBCL patients. GEPIA database showed that ATOX1 gene
was highly expressed in the tumor tissues of DLBCL (Figure 4A).
In this study, we selected ATOX1 as the hub gene for subsequent
analysis.

ATOX1 depletion induces G2 cell cycle arrest and alters cell cycle
regulatory proteins in DLBCL
We used qRT-PCR and WB assays to identify ATOX1 expression
in DLBCL cells. When compared to the control cell HCC38BL,
ATOX1 mRNA and protein levels were considerably higher in

DB, and U2932 cells in DLBCL, where DB and U2932 exhib-
ited significant upregulation (Figure 4B). Knockdown using
si-ATOX1#1 showed greater efficiency in DB and U2932 cell
lines and was selected for subsequent analysis (Figure 4C).
ATOX1#1 knockdown dramatically lowered the proliferation
rate of DLBCL cells, as demonstrated by CCK-8 assays (Figure 4D
and 4E). The results from flow cytometry indicated that when
ATOX1 was knocked down using si-ATOX1#1, there was a notable
difference compared to the control group, further investiga-
tion into the cell cycle demonstrated a significant G2 phase
arrest (Figure 4F and 4G). WB methods were utilized to deter-
mine the protein expression levels of cell cycle-related proteins
in DLBCL cell lines following ATOX1 knockdown. The results
showed that after knocking out ATOX1, cell cycle regulatory
protein (Cyclin B1) was significantly downregulated, while cell
cycle negative regulatory protein (p27) was significantly upreg-
ulated (Figure 4H). This supported a potential role for ATOX1 in
cell cycle control in DLBCL.

ATOX1 knockdown and copper supplementation impact MAPK
pathway protein expression in DLBCL cells
The MAPK pathway is a signaling cascade that regulates a
number of cellular functions, including the progression of lym-
phoma. In the MAPK pathway, P-ERK1/2 is crucial for regu-
lating a number of BPs, including cell division, proliferation,
and survival. We continued to use the WB method to detect the
protein level of the MAPK pathway after knocking down ATOX1
in DLBCL cells. The findings demonstrated that following ATOX1
knockdown, P-ERK1/2 components of the MAPK pathway had
much lower levels of protein expression in DLBCL cell lines
(Figure 5A). It was found that reducing ATOX1 expression led
to a decrease in the expression levels of proteins in the MAPK
pathway could be reversed by knocking down ATOX1 and adding
10 μM CuCl2 (Figure 5B and 5C). This showed that in DLBCL
cells, the activation of the MAPK pathway may be modulated by
ATOX1 and copper.

Inhibitory effects of DCAC50 treatment and ATOX1 knockdown
on DLBCL cell proliferation and MAPK pathway
The newly discovered small molecule inhibitor, DCAC50,
reduces cell proliferation and increases oxidative stress by tar-
geting intracellular copper chaperones ATOX1 and CCS. We
assessed cell IC50 of DLBCL cells using a CCK-8 assay after
treatment with different concentrations of DCAC50. Treat-
ment with DCAC50 significantly inhibited cell activity com-
pared with untreated DLBCL cells. Notably, the cells treated
with 15 and 20 μM DCAC50 showed the largest decrease in
cell IC50 (Figure 6A and 6B). WB analysis showed that pro-
tein levels were noticeably reduced for most members of the
MAPK pathway in DLBCL cells treated with DCAC50, indicat-
ing potential disruption of this pathway and contributing to
its anti-proliferative effects (Figure 6C and 6D). Moreover, the
simultaneous knockdown of ATOX1#1 enhanced the inhibitory
effects of DCAC50 on cell proliferation (Figure 6E and 6F).
These findings suggest that DCAC50 exerts a dose-dependent
inhibitory effect on DLBCL cell growth, with more pronounced
effects observed at higher concentrations, and knockdown of
ATOX1#1 promoting its effects.
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Figure 2. Turquoise module and cuproptosis-related genes revealed six candidates through the PPI network. (A) Heatmap of the cluster distribution
of genes in the turquoise module in the GSE25638 dataset, with 26 DLBCL samples listed in red and 13 normal control samples listed in green; (B–E) Bubble
plots showing the top ten enriched terms for different categories: BP, CC, MF, and KEGG pathway. Each bubble represents a term and its size is proportional
to the number of enriched DEGs in that term. Colors indicate the significance level of enrichment, with darker shades representing higher significance;
(F) Venn diagram, the middle part is the 24 genes that intersect cuproptosis-related genes and DEGs from GSE25638; (G) The PPI network of 24 genes
constructed from the STRING database with 24 nodes and 37 edges; (H–J) Sub-networks of top ten genes constructed by the MCC, BottleNeck and Degree
algorithms in the Cytohubba plugin; (K) Venn diagram screened out six intersection genes in MCC, BottleNeck, and Degree algorithm. DLBCL: Diffuse large
B-cell lymphoma; DEGs: Differentially expressed genes; PPI: Protein–protein interaction; BP: Biological process; CC: Cellular component; MF: Molecular
function; ATOX1: Antioxidant 1.

Xie et al.
ATOX1 drives MAPK in DLBCL via copper 21 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


A B C

FD

G H I

E

MT1H

ATOX1 CP SLC11A2

MT1X MT2A

Rank in ordered dataset

0.6
0.4

1.0

0 5,000 10,000 15,000 20,000

Rank in ordered dataset
0 5,000 10,000 15,000 20,000

Rank in ordered dataset
0 5,000 10,000 15,000 20,000

Rank in ordered dataset
0 5,000 10,000 15,000 20,000

Rank in ordered dataset
0 5,000 10,000 15,000 20,000

Rank in ordered dataset

1–Specificity (FPR)

Se
ns

iti
vi

ty
 (T

PR
)

Se
ns

iti
vi

ty
 (T

PR
)

0 5,000

0.0

1.0

0.8

0.6

0.4

0.2

0.0

J

Se
ns

iti
vi

ty
 (T

PR
)

1.0

0.8

0.6

0.4

0.2

0.0

K

Se
ns

iti
vi

ty
 (T

PR
)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.2 0.4 0.6

ATOX1
AUC: 0.999
CI: 0.996–1.000

CP
AUC: 0.941
CI: 0.889–0.992

MT1H
AUC: 0.850
CI: 0.785–0.915

MT1X
AUC: 0.925
CI: 0.894–0.956

MT2A
AUC: 0.934
CI: 0.909–0.960

0.8 1.0

1–Specificity (FPR)

0.0 0.2 0.4 0.6 0.8 1.0

1–Specificity (FPR)

0.0 0.2 0.4 0.6 0.8 1.0

1–Specificity (FPR)

0.0 0.2 0.4 0.6 0.8 1.0

Se
ns

iti
vi

ty
 (T

PR
)

1.0

0.8

0.6

0.4

0.2

0.0

1–Specificity (FPR)

0.0 0.2 0.4 0.6 0.8 1.0

10,000 15,000 20,000

0.5

H

H

H

H

L

L

L L

H

L

H

VITAMIN B12_METABOLISM(ES=0.7710,NP=0.0000)

FOLATE_METABOLISM(ES=0.6665,NP=0.0000)

L

(ES=0.6636,NP=0.0000)

VITAMIN B12_METABOLISM(ES=0.7664,NP=0.0000)

UREA CYCLE AND ASSOCIATED PATHWAYS(ES=0.7942,NP=0.0000)

COPPER HOMEOSTASIS(ES=0.7516,NP=0.0000)
PHYSIOLOGICAL_AND_PATHOLOGICAL_HYPERTROPHY_OF_THE_HEART

0.2
0.0

0.0

En
ric

hm
en

t
sc

or
e

R
an

ke
d 

lis
t

m
et

ric

En
ric

hm
en

t
sc

or
e

R
an

ke
d 

lis
t

m
et

ric

En
ric

hm
en

t
sc

or
e

R
an

ke
d 

lis
t

m
et

ric

En
ric

hm
en

t
sc

or
e

R
an

ke
d 

lis
t

m
et

ric

En
ric

hm
en

t
sc

or
e

R
an

ke
d 

lis
t

m
et

ric

En
ric

hm
en

t
sc

or
e

R
an

ke
d 

lis
t

m
et

ric

0.6
0.4

1.0

0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6

PATHWAYS_OF_NUCLEIC_ACIS_METABOLISM_AND_INNATE_IMMUNE_SENSING
(ES=–0.7457,NP=0.0000) TUMOR_SUPPRESSOR_ACTIVITY_OF_SMARCB1(ES=–0.6969,NP=0.0000)

EDA_SIGNALLING_IN_HAIR_FOLLCLE_DEVELOPMENT(ES=–0.8061,NP=0.0000)

APOPTOSISRELATED_NETWORK_DUE_TO_ALTERED_NOTCH3_IN_OVARIAN_
CANCER(ES=–0.6535,NP=0.0000)

FATTY_ACID_BIOSYNTHESIS(ES=0.7508,NP=0.0019)
SPHINGOLIPID_METABOLISM_INTEGRATED_PATHWAYS(ES=0.6364,NP=0.0000)

0.4

0.2

0.0

–0.2

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4

0.5

0.2
0.0

0.6
0.4
0.2
0.0

0.0

0.0

0.0
0.2
0.4
0.6

0.0

–0.1
–0.2
–0.3
–0.4
–0.5
–0.6

–0.6

0.3
0.2
0.1
0.0

–0.1
–0.2

–0.4
–0.2

–0.4
–0.2

0.2
0.4
0.6

Figure 3. The GSEA and ROC analysis on the candidate genes. (A–F) Enrichment analysis on six candidate genes using WikiPathway module from GSEA.
The x-axis represents rank in an ordinal dataset, while the y-axis shows ranked list metrics. Enrichment scores are represented by colored bars, indicating the
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Figure 4. Regulatory effects of ATOX1 knockdown on cell proliferation, and cell cycle progression in DLBCL cells. (A) Expression levels of copper
apoptosis-related gene ATOX1 in DLBCL samples and normal samples in the GEPIA2 database; (B) Expression levels of ATOX1 in DLBCL cells and control
HCC38BL determined by qRT-PCR (upper parts) and WB (bottom parts) assays; (C and D) qRT-PCR (upper parts) and WB (bottom parts) assays were used to
determine the expression level of ATOX1 in DLBCL cells after knocking down ATOX1; (E and F) CCK-8 detected the regulatory effect of ATOX1 knockdown on
DLBCL cell proliferation; (G–J) Flow cytometry analysis depicting the cell cycle distribution of DLBCL cells after knockdown of ATOX1 #1. Histograms show
the distribution of cells in different phases of the cell cycle including G1 (Gap 1), S (Synthetic), and G2 (Gap 2); (K) WB detection of knockdown ATOX1 #1 cell
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Figure 5. Modulation of MAPK pathway protein levels following ATOX1 knockdown and CuCl2 treatment. (A) WB detection of MAPK pathway protein
levels in DLBCL cells after ATOX1 knockdown; (B and C) After knocking out ATOX1 and adding 10 μM CuCl2, the protein levels of some members of the MAPK
pathway in DLBCL cells were detected by WB. DLBCL: Diffuse large B-cell lymphoma; MAPK: Mitogen-activated protein kinase; WB: Western blotting;
ATOX1: Antioxidant 1.

Figure 6. Evaluation of DLBCL cell responses to DCAC50 treatment and ATOX1 knockdown. (A and B) IC50 by CCK-8 assay of DLBCL cells treated with
different concentrations of DCAC50 (0, 1, 2.5, 5, 15, and 20 μM); (C and D) The impact of DCAC50 gradient dose treatment (0, 1, 2.5, 5, 15, and 20 μM) on
the levels of MAPK proteins evaluated using western blot; (E and F) CCK-8 detects the effect of ATOX1 knockdown and DCAC50 gradient dose treatment
(0, 1, 2.5, 5, 15, and 20 μM) on the proliferation of DLBCL cells. *P < 0.05. DLBCL: Diffuse large B-cell lymphoma; MAPK: Mitogen-activated protein kinase;
CCK-8: Cell counting kit-8; ATOX1: Antioxidant 1.

Discussion
The most common form of malignant lymphoma in medi-
cal practice is DLBCL, which primarily affects middle-aged
and elderly individuals [21]. Studies have demonstrated that

typical indications of DLBCL include high fever and a range
of systemic symptoms, such as an enlarged painless neck and
progressive enlargement of lymph nodes in the supraclavicu-
lar region [22, 23]. Furthermore, personalized chemotherapy

Xie et al.
ATOX1 drives MAPK in DLBCL via copper 24 www.biomolbiomed.com

https://www.biomolbiomed.com
https://www.biomolbiomed.com


combined with immune-targeted therapy is often utilized based
on specific symptoms, type of pathology, and location of the
tumor. However, due to its high prevalence and aggressive-
ness, the treatment of DLBCL is often challenging and the prog-
nosis is usually poor [24, 25]. Previous research has proposed
that cuproptosis may contribute to the development of malig-
nant tumors [26, 27]. In this study, we employed bioinformatics
and in vitro experimental investigation to examine the mech-
anism and clinical significance of cuproptosis-related genes
in DLBCL.

We conducted a gene co-expression network analysis using
WGCNA on the GSE25638-DEGs obtained from the GSE25638
database. Results showed that the turquoise module was the
most significant in this network. Subsequently, we performed
functional analysis on the genes within the turquoise module
and identified enrichment in cytokine receptor binding, amoe-
biasis, cytokine–cytokine receptor interaction, focal adhesion,
and malaria. These pathways have been previously linked to
the development of lymphoma. For instance, Waldron et al. [28]
proposed that cytokine–receptor interactions play a role in
the biology of Hodgkin’s disease and anaplastic large cell lym-
phoma, differentiating them from other forms of lymphoma.
According to research by Bosch et al. [29], focal adhesion is
linked to a bad prognosis in DLBCL patients, the expression of
the related protein FAK, may be an independent prognostic fac-
tor for DLBCL. Furthermore, studies have shown a connection
between malaria infection and endemic Burkitt lymphoma [30].
In summary, our examination underscores the importance of
pivotal gene modules in DLBCL, indicating their possible part in
the etiology and outcome of the illness, which is corroborated by
extant research.

Based on this, we identified six candidate genes (ATOX1, CP,
MT1H, MT1X, MT2A, and SLC11A2) from GSE25638-DEGs and
cuproptosis-related genes by PPI networks, verified their clin-
ical value in DLBCL. The GSEA-Wikipathway results showed
that the enrichment items of these genes included Copper
homeostasis, Vitamin B12 metabolism, Fatty acid biosynthesis,
etc. Several studies have shown that vitamin B12 intake has a
protective effect on NHL in heavy smokers [31, 32]. Fatty acids
can affect cancer cell invasion and lymph node metastasis, their
oxidative pathways provide new targets for the treatment of
DLBCL [33]. As a treatment option for DLBCL, fatty acid syn-
thase inhibition of fatty acid synthase preferentially disrupts
de novo fatty acid synthesis [34]. According to ROC analysis,
ATOX1, CP, MT2A, MT1X, and MT1H all had AUC values better
than 0.85. The AUC value of ATOX1 was the highest, indicating
that it had the strongest predictive ability for DLBCL patients.
Furthermore, GEPIA database analysis revealed that the ATOX1
gene was substantially expressed in DLBCL tumor tissues. As a
result, we chose ATOX1 as the hub gene.

ATOX1, a copper chaperone, has a significant impact on
cellular antioxidant defense and copper homeostasis [35]. It
is involved as a cytoplasmic protein in the transport of intra-
cellular copper ions to various copper-dependent enzymes,
including those involved in oxidative stress protection and
angiogenesis [36]. ATOX1 is responsible for delivering cop-
per to copper-dependent enzymes involved in antioxidant

defense and extracellular matrix remodeling. ATOX1-mediated
dysregulation of copper homeostasis is associated with
increased oxidative stress and altered cellular behavior,
potentially leading to cancer development [37]. Research has
indicated that breast cancer cell migration is influenced by
the copper chaperone ATOX1 [38]. Another study showed that
activin A-induced migration and colony formation of colon can-
cer cells were enhanced by nuclear translocation of ATOX1 [39].
Through a series of in vitro cell experiments, we discovered
that the knockdown of ATOX1 inhibited cell growth and caused
cell cycle arrest in the G1 phase of the cell cycle. Knockdown
of ATOX1 resulted in downregulation of Cyclin B1 protein
expression level and upregulation of p27 protein expression,
implying its role in inhibiting cell cycle progression. Moreover,
we found that after ATOX1 knockdown, P-ERK1/2 levels within
the MAPK pathway significantly decreased. Notably, copper
supplementation partially restored MAPK pathway activity
that was attenuated by ATOX1 reduction. This shows that ATOX1
is an important player that may have potential oncogenic
properties.

One significant signaling cascade that controls several cellu-
lar functions, such as cell division, growth, proliferation, and
responsiveness to external stimuli, is the MAPK pathway [40].
This pathway consists of a number of protein kinases that influ-
ence gene expression and cell behavior by transmitting signals
from cell surface receptors to the nucleus. The MAPK pathway
consists of three major kinases, namely, JNK, ERK, and p38
MAP kinase [41]. A sequence of phosphorylation events acti-
vates these kinases in response to a variety of stimuli, including
growth factors, stress, cytokines, and hormones [42]. When
active, the MAPK pathway performs a variety of functions,
whereas the ERK pathway is largely engaged in cell prolif-
eration, survival, and differentiation [43]. The JNK pathway
is frequently activated by stress signals and plays a role in
apoptosis, inflammation, and cellular damage responses [44].
The p38 pathway, which responds to numerous stimuli, reg-
ulates inflammation, apoptosis, and cell cycle arrest [45].
Abnormal regulation of the MAPK pathway is also linked
with tumor. Research has demonstrated that via controlling
the ERK/MAPK signaling pathway and specifically targeting
MEK1, miR-101 regulates cell proliferation and apoptosis in
DLBCL [46]. Another study found that ATOX1 is necessary for
MAPK pathway activation in melanoma, which indirectly sup-
ports MEK1/2 copper binding [47]. Through the WB method, we
discovered that P-ERK1/2 protein expression within the MAPK
pathway was significantly reduced in DLBCL cells when ATOX1
was knocked down, which could be reversed by CuCl2. This
highlights the intertwined roles of ATOX1 and copper in regu-
lating MAPK pathway activation. DCAC50 is a small molecule
inhibitor; study has confirmed that it is related to the other
partner protein ATOXA [48]. Our observations revealed that
DCAC50 administration ensures a dose-dependent attenuation
in DLBCL cell proliferation, with pronounced inhibition dis-
cernible at higher dosages, especially at 15 and 20 μM. The
antiproliferative prowess of this compound seemingly hinges
on its capacity to disrupt the MAPK pathway. Intriguingly,
this inhibition is augmented when combined with an ATOX1
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knockdown, hinting at a synergistic relationship. The interplay
between DCAC50 and the MAPK pathway, particularly in the
context of ATOX1, not only broadens our understanding of
DLBCL pathophysiology but also furnishes potential therapeu-
tic avenues.

Despite the valuable insights gained from our study, it
is important to acknowledge several limitations that may
affect the interpretation and generalization of our findings.
First, our conclusions were largely based on database and cell
line data, which provided preliminary exploratory informa-
tion. However, the lack of direct tissue-level validation is a
major limitation. In future studies, we plan to validate the
expression of ATOX1 in different types of tissue samples by
immunohistochemistry (IHC) experiments to provide stronger
evidence to support our hypothesis and conclusions. Second,
we have not yet validated the therapeutic effect of ATOX1 in
DLBCL in in vivo experiments. Although our study revealed
the potential role of ATOX1 in regulating the MAPK pathway
through copper transport in DLBCL, these conclusions were
only based on preliminary experimental data. To further delve
into the study and validate our hypothesis, we plan to con-
duct detailed in vivo experiments in animal models of DLBCL
to assess the specific role of ATOX1 and its potential thera-
peutic effects. In conclusion, these limitations emphasized the
need for further studies to validate our preliminary findings
and to provide a stronger foundation for the future develop-
ment of new therapeutic strategies. Furthermore, our study
was a preliminary exploration of the unique role and inno-
vative potential of the ATOX1 gene in DLBCL. Future stud-
ies will focus on integrating other related cup mutated genes
and using multivariate analysis methods to establish more
comprehensive and accurate prognostic prediction models for
DLBCL. This will help to provide clinicians with more effec-
tive support for individualized therapeutic decision-making,
thereby maximizing patient clinical management and disease
prognosis.

Conclusion
To investigate the role of cuproptosis-related genes in DLBCL,
we conducted molecular biology analysis. Our findings indi-
cate that six genes are involved in the progression of DLBCL,
with ATOX1 being the most promising for disease diagnosis. In
vitro cell experiments showed that ATOX1 knockdown led to
cell cycle arrest in the G2 phase and restricted the proliferation
of DLBCL cells. Furthermore, this ATOX1 knockdown resulted
in decreased levels of P-ERK1/2 protein in the MAPK pathway,
which were restored by CuC2 treatment. DCAC50 treatment
showed dose-dependent antiproliferative effects, which were
synergistically enhanced by ATOX1 knockdown. These results
suggest that the copper chaperone ATOX1 may regulate copper
transport to promote MAPK signaling and DLBCL growth, offer-
ing a new perspective on DLBCL prognosis.
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Supplemental data

Figure S1. (A) Volcano plot showing differential gene expression in TCGA data: the plot illustrates the log2 fold change of gene expression against the
−log10 P value for each gene. Blue dots represent 1115 downregulated genes, red dots represent 6297 upregulated genes, and gray dots represent 8298
genes with no significant change in expression. The x-axis indicates the log2 fold change, while the y-axis shows the −log10 P value. Genes with significant
changes in expression are plotted on either side, with downregulated genes on the left and upregulated genes on the right. (B) Box plots of gene expression
levels in normal and tumor samples: the plots compare the expression levels of ATOX1, CP, MT1H, MT1X, MT2A, and SLC11A2 genes between normal and
tumor tissues. Each box plot displays the median gene expression (line within the box), interquartile range (box), and range (whiskers). Pink boxes represent
tumor samples, and blue boxes represent normal samples. Asterisks above the boxes indicate significant differences in expression levels between normal
and tumor tissues (**** P < 0.0001).

Table S1. Sequences of primer

Gene name Sequences of primer Annealing temperature Product length

ATOX1 Forward: 5′-TCTGAGCACAGCATGGACACTC-3′ 53◦C 22bp
Reverse: 5′-TCTGGAAGCCAGCGGGAGGAT-3′

GAPDH Forward: 5′-CAGTCAGCCGCATCTTCTTTTGCGTCG-3′ 55◦C 27bp
Reverse: 5′-CAGAGTTAAAAGCAGCCCTGGTGACCAGG-3′

Sequences of primers used for PCR amplification of the ATOX1 and GAPDH genes. For each gene, the forward and reverse primer sequences are provided.
The table also includes the annealing temperatures used during PCR and the length of the PCR product in base pairs (bp). The annealing temperatures for
ATOX1 and GAPDH primers are 53◦C and 55◦C, respectively, with product lengths of 22 bp for ATOX1 and 27 bp for GAPDH.
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