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R E V I E W

Naringenin—A potential nephroprotective agent for
diabetic kidney disease: A comprehensive review of
scientific evidence
Estefania Valle-Velázquez 1,2, Oscar René Zambrano-Vásquez 1, Fernando Cortés-Camacho 1, Laura Gabriela Sánchez-Lozada 1,
Gustavo Guevara-Balcázar 2, and Horacio Osorio-Alonso 1,2∗

Diabetes mellitus (DM) is a chronic disease characterized by persistent hyperglycemia, which is a major contributing factor to chronic
kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular-related deaths. There are several mechanisms leading to
kidney injury, with hyperglycemia well known to stimulate oxidative stress, inflammation, tissue remodeling, and dysfunction in the
vascular system and organs. Increased reactive oxygen species (ROS) decrease the bioavailability of vasodilators while increasing
vasoconstrictors, resulting in an imbalance in vascular tone and the development of hypertension. Treatments for diabetes focus on
controlling blood glucose levels, but due to the complexity of the disease, multiple drugs are often required to successfully delay the
development of microvascular complications, including CKD. In this context, naringenin, a flavonoid found in citrus fruits, has
demonstrated anti-inflammatory, anti-fibrotic, and antioxidant effects, suggesting its potential to protect the kidney from the
deleterious effects of diabetes. This review aims to summarize the scientific evidence of the effects of naringenin as a potential
therapeutic option for diabetes-induced CKD.
Keywords: Diabetes, chronic kidney disease (CKD), naringenin, oxidative stress, hypertension, inflammation.

Introduction
Diabetes mellitus (DM) is a metabolic disease characterized by
hyperglycemia, resulting from defects in insulin secretion or
action. This leads to polyuria, polydipsia, polyphagia, and body
weight loss. The prevalence of diabetes has reached epidemic
proportions, as it is estimated to affect more than 9% of the
total world population (more than 463 million people) and is
predicted to increase to over 638 million by 2045 [1].

Diabetes management represents a high economic burden,
mainly due to the need for glycemic control. Poor control of
glycemia leads to damage to target organs and systems, result-
ing in disability and premature death. The main organs and
systems affected by long-term hyperglycemia include the heart,
blood vessels, eyes, nerves, and kidneys [2, 3]. In this sense,
diabetes is the leading cause of chronic kidney disease (CKD)
and end-stage renal disease (ESRD) worldwide [2, 4].

CKD is a non-communicable disease that has become an
emergent health problem affecting more than 10% of the global
population, (over 800 million people) and significantly con-
tributing to morbidity and mortality rates worldwide [4, 5]. In
people with diabetes, the prevalence of CKD has been reported
to be between 25% and 38%, with predictions that more than
40% will develop CKD at any stage. Importantly a significant

number will develop ESRD and require dialysis and/or kidney
transplant [1, 6].

Furthermore, the progression of CKD is accelerated by the
coexistence of comorbidities, such as diabetes (1:3) and high
blood pressure (1:5) [7]. The coexistence of diabetes and hyper-
tension increases the risk of developing micro- and macrovas-
cular complications, such as CKD and cardiovascular disease
(CVD) [8, 9]. In fact, hypertension is prevalent in patients with
diabetic nephropathy and increases as renal function declines.
Therefore, therapeutic strategies for diabetes must focus on
controlling hyperglycemia, oxidative stress, inflammation, and
hypertension to retard the progression of CKD [8–10]. In addi-
tion, diabetes is commonly associated with other comorbidities,
such as dyslipidemia and obesity (features of metabolic syn-
drome), which themselves represent risk factors for the devel-
opment of microvascular complications such as CKD [11].

CKD is stratified according to proteinuria, glomerular
filtration rate (GFR), and albumin/creatinine ratio (ACR) [12].
In diabetes, CKD (diabetic nephropathy) is characterized
by glomerular hyperfiltration, hypertrophy, albuminuria
(>300 mg/day), thickening of the basement membrane,
mesangial expansion, nodular sclerosis, and tubulointerstitial
fibrosis, eventually leading to a progressive decline in GFR,
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Figure 1. Hyperglycemia is the major pathogenic mechanism leading to the activation of cellular mechanisms and signaling pathways, which
subsequently result in diabetic nephropathy. Hyperglycemia increases the formation of advanced glycation end-products, and reactive oxygen species,
and it activates the renin–angiotensin system, at both systemic and local levels. These pathogenic factors stimulate inflammation and fibrosis in endothelial,
glomerular, mesangial, and tubular cells, leading to impaired renal function and ultimately to diabetic nephropathy. AGE: Advanced glycation end products;
Ang II: Angiotensin II; AT1R: Angiotensin II type 1 receptor; eNOS: Endothelial NO synthase; ET-1: Endothelin-1; GBM: Glomerular basement membrane;
GFR: Glomerular filtration rate; IL-1β: Interleukin 1-beta; IL-6: Interleukin-6; p38-MAPK: P38 mitogen-activated protein kinase; MC: Mesangial cell;
NO: Nitric oxide; NLRP3; Nucleotide-binding and oligomerization domain-like receptors; NF-κB: Nuclear factor kappa B; RAGE: Receptor for AGEs; ROS:
Reactive oxygen species; TNF-α: Tumor necrosis factor-alpha.

and ultimately, ESRD, in which dialysis or renal replacement
therapy to sustain life is needed [13, 14].

Pathogenesis of diabetes-induced chronic kidney disease
The progression of CKD is multifactorial and results from
the complex interaction of several processes, including
altered homeostasis, metabolic disorders, hemodynamic abnor-
malities, increased generation of reactive oxygen species
(ROS), proinflammatory mechanisms, and activation of the
rennin–angiotensin–aldosterone system (RAAS) [3].

Hyperglycemia triggers mechanisms, such as activation of
the polyol pathway flux and the formation of advanced glyca-
tion end products (AGEs), which bind to the receptor for AGE
(RAGE). This leads to the formation of the AGE–RAGE complex,
which activates NADPH oxidase (NOX) and stimulates ROS pro-
duction (Figure 1). The increase in local angiotensin II (Ang
II) synthesis mediates other signaling pathways to produce
ROS, such as the protein kinase C/NOX (PKC/NOX) pathway
(Figure 1) [15].

Oxidative stress is recognized as a primary factor contribut-
ing to the onset of endothelial dysfunction and hypertension
in diabetes. Moreover, chronic hyperglycemia induces changes
in the vascular endothelium, which plays crucial roles in blood
regulation, tissue oxygenation, and, notably, the modulation of

vascular tone through the secretion of vasoactive substances at
systemic and tissue levels. In this context, diabetes and hyper-
tension activate signaling pathways that stimulate inflamma-
tory processes and oxidative stress, deteriorating endothelial
function (Figure 1) [16]. On the other hand, in patients and ani-
mals with diabetes nitric oxide (NO)-dependent vasodilation is
impaired due to decreased activity or expression of endothelial
NO synthase (eNOS), which is caused by oxidative stress and
inflammation [10, 17]. In addition, increased ROS leads to the
rapid oxidation of NO, reducing its bioavailability and resulting
in the predominance of vasoconstrictor substances, such as Ang
II and endothelin 1 (ET-1) in endothelial cells [18].

The kidney’s endothelium performs unique functions,
including blood filtration at the glomeruli. Peritubular capillar-
ies contribute to the reabsorption, secretion, and elimination of
waste products carried out by proximal tubules. Hyperglycemia
induces endothelial dysfunction in the diverse renal vascular
beds, thus disturbing kidney function [19].

The kidney has all the components of the RAAS,
but contrary to the systemic RAAS, it is activated by
hyperglycemia [10, 20, 21]. A glucose-response element in
the angiotensinogen (Agt) gene promoter mediates the stim-
ulation of intrarenal Agt synthesis by high glucose [22].
Also, renin, a key component in RAAS, is overexpressed
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under hyperglycemia conditions [23]. Ang II has relevant
hemodynamic effects, and its overactivation plays a key role
in the development of glomerular hyperfiltration. Increasing
AT1 receptor signaling is a determinant in inducing Ang II
renal effects [10, 24]. Besides hemodynamic alterations, Ang II
stimulates the expression of proinflammatory and profibrotic
mediators and activates NOX, stimulating renal production of
ROS. This, combined with an increase in transforming growth
factor-beta (TGF-β), leads to remodeling of the extracellular
matrix in the mesangium and promotes fibrotic processes in
the renal tubular interstitium [25].

In the kidney, oxidative stress causes damage to mesangial
cells, endothelial cells, and podocytes, impairing the glomerular
filtration barrier. This leads to proteinuria and tubulointersti-
tial fibrosis [26, 27].

Moreover, oxidative stress promotes the aggregation of
lymphocytes, neutrophils, and macrophages, which synthesize
proinflammatory cytokines, chemokines, growth factors, and
transcription factors, aggravating inflammation and oxidative
stress [15]. During diabetes and in response to oxidative stress,
kidney cells produce proinflammatory substances facilitating
the innate immune response through the release of chemokines,
adhesion molecules (CAMs), and damage-associated molecu-
lar patterns (DAMPs). This increases renal inflammation and
promotes the infiltration of neutrophils and macrophages [26].
Part of the inflammatory response in the kidney is medi-
ated by nuclear factor kappa B (NF-κB), which promotes
the synthesis of interleukin-1β (IL-1β) and IL-18 [27, 28].
Likewise, increments in serum levels of IL-6 and IL-18 are
related to albuminuria, thickening of the glomerular base-
ment membrane (GBM), and increased concentrations of
interferon-γ (IFN-γ), IL-1β, and tumor necrosis factor-alpha
(TNF-α) (Figure 1) [26, 27]. Further, in patients and experimen-
tal models of diabetic nephropathy, the increase in TNF-α, IL-6,
and IL-18 in glomerular and proximal tubule cells correlates
with microalbuminuria [27, 28].

Treatments for diabetes-induced chronic kidney disease
The treatment of diabetic nephropathy is focused on delaying
or halting the progression of the disease to advanced stages.
In both patients and experimental models, it has been demon-
strated that controlling hyperglycemia and blood pressure
reduces proteinuria, hyperfiltration, and glomerular lesions [7].
However, because diabetes complications are primarily associ-
ated with vascular complications, protecting systemic and renal
vascular function is also important. Therefore, treatments, in
addition to being tailored for controlling hyperglycemia and
blood pressure, should include protecting endothelial and renal
function and regulating oxidative stress and inflammation.

Managing diabetic nephropathy requires a multidimen-
sional approach encompassing lifestyle adjustments, patient
education, and pharmaceutical intervention. Over the years,
various medications have been formulated, each targeting
distinct mechanisms to safeguard the kidneys, impede disease
advancement, and alleviate cardiovascular complications.
Recent advancements have introduced novel medication
classes, offering substantial potential in combating diabetic

nephropathy and its associated cardiovascular risks. However,
despite the availability of these drugs, effectively managing
this disease continues to pose challenges, with a notable
residual risk persisting despite adherence to optimal medical
regimens [29]. This is especially true for the risk of devel-
oping macro- and microvascular complications [30]. In this
context, medicine based on drugs combined with lifestyle
changes has increased life expectancy and is considered
complementary medicine [31, 32]. In turn, lifestyle changes can
include physical activity, as well as improvement in dietary
habits, and even the use of traditional medicine, including
herbs, fruits, vegetables, and spices. The therapeutic efficacy
of complementary medicine is due to the content of active
substances that exert beneficial effects on health, known as
nutraceuticals [33, 34]. Therefore, studying herbal medicine
to find potential compounds that support the conventional
or complementary medicine currently used to treat/manage
diabetes is justified.

Compounds derived from plants, fruits, or vegetables
include a wide group of substances and have demonstrated
benefits in reducing the progression of chronic diseases, such as
diabetes, hypertension, and CKD [30, 32, 34, 35]. Within these
substances are flavonoids, a group of compounds that include
several subclasses, such as flavanols, flavanones, isoflavones,
anthocyanins, etc. [36, 37].

Flavonoids
Flavonoids are a large group of compounds present in veg-
etables, fruits, seeds, grains, and spices. The content of
these compounds may vary in leaves, bark, fruit, flower,
and stem. The chemical structure of flavonoids is formed
by two aromatic rings linked by a carbon chain that forms
an oxygenated heterocyclic ring (C6-C3-C6) (Figure 2) [38].
According to certain characteristics, such as the presence
of radicals, oxidation, unsaturation degree, or functional
groups in their structure, flavonoids are classified as anthox-
anthins, flavanones, flavanonols, flavans, chalcones, antho-
cyanidins, and isoflavonoids [39]. It has been suggested that
the antioxidant activity of flavonoids is closely related to
the hydroxyl groups in their structure, which confer the
capacity for free radical scavenging and metal ion chelating
activities (Figure 2) [39]. Flavonoids have been utilized in
traditional medicine because this broad group of substances has
shown health-promoting activities, such as anti-inflammatory,
antioxidative, anti-carcinogenic, anti-hyperlipidemic, and
anti-diabetic effects. Numerous flavonoids have undergone
evaluation via both in vitro and in vivo experiments, with
consistently reproducible effects. This substantiates their
utilization as therapeutic options and has facilitated their
commercialization in various forms, including tablets, cap-
sules, powder, granules, suspension, or emulsion. Examples
of drugs derived from flavonoids include diosmin (3′,5,7-
trihydroxy-4′-methoxyflavone 7-rutinoside), hesperidin
(3′,5,7-trihydroxy-4-methoxyflavanone 7-rhamnoglucoside),
troxerutin (a derivative of the naturally occurring bioflavonoid
rutin), and hidrosmin [3′,5-di-O-(hydroxyethyl) diosmin].
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Figure 2. Flavonoids are a large group of compounds subclassified according to the radical or group attached to their main structure. Among these
subclassifications are flavanones, such as naringenin, which can be found in both aglycone and glycosylated forms. Naringenin and its glycoside forms
undergo metabolism through glucuronidation, sulfation, or methylation, resulting in naringenin derivatives.

These drugs are mostly used for treating inflammation,
edema, and venous insufficiency [38–40]. Naringenin (4,5,7-
dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one)
is a flavanone that also has demonstrated biological activity
with potential application in therapy.

Studies have shown that oral intake of flavonoids can
reduce the harm inflicted on the glomerular filtration bar-
rier due to hyperglycemia by hindering signaling pathways
linked to kidney damage [26]. Flavonoids activate mecha-
nisms that encompass antioxidative and anti-inflammatory
properties and potential antidiabetic, antihypertensive, antifi-
brotic, anti-remodeling, and antiapoptotic effects. Additionally,
flavonoids exhibit an antihypertensive effect by promoting
diuresis and natriuresis and decreasing circulating volume, car-
diac output, and vascular resistance [41, 42].

Naringenin
Naringenin (4,5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihy
drochromen-4-one) is a flavonoid with a molecular weight of
272.26 g/mol and belongs to the group of flavanones. It has a
characteristic structure of a linear 3-carbon chain (C6-C3-C6),
arranged in an oxygenated heterocyclic nucleus disposition
(Figure 2) [43, 44]. In nature, naringenin is widely found in
the fruit and peel extracts from the Citrus genus of the Rutaceae
family in two primary forms: aglycosylated (naringenin) and
glycosylated (naringin or naringenin-7-O-glycoside) (Figure 2).

Naringenin has been identified as the compound respon-
sible for the bitter taste in the juice and peel of various
citrus fruits such as lemon, orange, mandarin, and grapefruit.

The concentration of naringenin in citrus fruits has been
reported to range between 50 and 1200 mg/L, with the
highest concentrations in grapefruit (43.5 mg/100 mL), fol-
lowed by orange juice (2.13 mg/100 mL), and lemon juice
(0.38 mg/100 mL) [43, 45, 46]. However, grapefruit juice as
a source of naringenin should be used under strict medical
surveillance because it has been reported to affect the bioavail-
ability and effectiveness of statins, commonly used for control-
ling dyslipidemia in type 2 diabetes [47].

Naringenin undergoes hydrolysis in the liver facilitated by
the enzyme lactase hydrolase and can subsequently undergo
phase I and phase II metabolism processes involving oxidation
or demethylation by cytochrome P450 monooxygenases. Subse-
quently, it may undergo glucuronidation, sulfation, or methyla-
tion by enzymes, such as UDP-glucuronosyltransferases (UGT)
and sulfotransferases (SULT), resulting in metabolites that are
excreted in the urine. Thus, naringenin and its metabolites are
excreted through feces and urine [48].

As with other flavonoids, the antioxidant effects of fla-
vanones, especially naringenin, are conferred by hydroxyl
groups and a double bond in their structure. Thus the antioxi-
dant activity is attributed to the hydroxyl groups in the 7-OH,
4′-OH, and 5-OH positions and the 4(=O) carbonyl group on
the central ring (Figure 2) [44]. However, naringenin’s antiox-
idant activity is lower than that of other flavonoids, which has
been attributed to the absence of the C2=C3 double bond [49].
Other naringenin-related activities include anti-inflammatory,
antiviral, anticancer, and immunomodulatory effects [50, 51].
On the other hand, the glycosylated form of naringenin,
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naringin has also shown cytoprotective effects through antiox-
idant mechanisms [52].

Therapeutic effects of naringenin
As described in the previous section, diabetes, through the acti-
vation of several metabolic and signaling pathways, increases
ROS formation, thereby activating other inflammatory, fibrotic,
and apoptotic pathways. In addition to hyperglycemia, control-
ling oxidative stress may be an important therapeutic target to
delay the development and progression of CKD. Because most
flavonoids have potential as antioxidants, naringenin has also
been assessed for this biological activity in experimental models
of diseases associated with oxidative stress, including diabetes.

Effects of naringenin on hyperglycemia
Naringenin has demonstrated positive effects on diabetes in
both clinical studies and experimental models. These effects
include muscle, liver, adipose tissue, and pancreatic function
improvements. Such effects are attributed to increased glucose
uptake, insulin secretion, and improved insulin sensitivity in
peripheral tissues [53–56]. In this respect, it is well known that
hyperglycemia is the main target for controlling diabetic com-
plications, including microvascular dysfunction. In diabetic
rats, naringenin restored pancreatic β cell mass and improved
glucose metabolism and enhanced glucose-stimulated insulin
secretion in isolated rat islets in an activation Erβ-dependent
way as observed in in vivo experiments [53, 56, 57]. Also,
naringenin induced the expression of genes, such as estro-
gen receptor-a (ERa), fibroblast growth factor 21 (FGF21),
pancreatic and duodenal homeobox 1 (Pdx1), and V-Maf
musculoaponeurotic fibrosarcoma oncogene homolog A (MafA),
which are closely linked to improved β-cell function [53, 57].
In skeletal muscle cells naringenin enhanced glucose uptake
by significantly increasing AMP-activated protein kinase
phosphorylation (AMPK phosphorylation/activation) [58].
Additionally, naringenin improved lipid profile (LDL-c, HDL-
c, triglycerides, and total cholesterol) in an experimental model
of type 2 diabetes [56].

Thus, naringenin’s effects on glucose homeostasis include
improving pancreatic function, insulin secretion, and glu-
cose uptake in peripheral tissues, which are mediated by the
increase in the function and expression of glucose transporter
4 (GLUT4).

Effects of naringenin on oxidative stress in the kidney
In the kidneys of diabetic animals, naringenin treatment
reduced lipid peroxidation and increased superoxide dismutase
(SOD) and catalase (CAT) activities (Figure 3). Furthermore, it
reduced apoptosis and the expression of TGF-β and IL-1β [59].
Regarding dyslipidemia as a contributing factor to CKD, narin-
genin has shown notable advantages. In ApoE-/- knockout mice,
naringenin ameliorated dyslipidemia, atherosclerotic lesion
formation, and vascular senescence. These beneficial effects
of naringenin were induced by decreasing ROS formation and
increasing the activities of antioxidant enzymes and the pro-
tein expressions of mitochondrial biogenesis-related genes.
Naringenin treatment also enhanced the protein expression

and activity of ATP synthase and sirtuin 1 (SIRT1), increas-
ing the deacetylation and protein expression of SIRT1’s target
genes forkhead box protein O3a (FOXO3a), and peroxisome
proliferator-activated receptor a (PPARa) coactivators 1 alpha
(PGC1α) [60, 61]. Other studies in experimental models of dia-
betes have reported that naringenin was able to decrease hyper-
glycemia, creatinine, and urea in plasma, as well as to reduce
malondialdehyde (MDA), IL-1β, IL-6, TNF-α, and TGF-β lev-
els in both plasma and the kidney. In contrast, reduced glu-
tathione and the activities of SOD and CAT were increased in
the diabetic kidney with naringenin treatment. These effects
improved the histology and architecture of glomeruli and
tubules and reduced apoptosis, contributing to attenuated renal
dysfunction induced by diabetes including decreased hyperfil-
tration, microalbuminuria, polyuria, and creatinine clearance
(Figure 3) [56, 62, 63].

In an experimental model of diabetes, combining naringenin
treatment with an antihypertensive drug improved biochemi-
cal and urine parameters, aligning with the reduction of oxida-
tive stress and renal damage [64]. These results suggest that
naringenin alone or in combination can induce renal protection.

Cardiovascular effects of naringenin and their role on diabetic
nephropathy progression
A crucial element in renal dysfunction and CKD is hyperten-
sion, which frequently coexists with diabetes and metabolic
syndrome. Hypertension is closely linked to the imbalance
between vasodilatory and vasoconstrictive substances, mod-
ulation of vascular tone, and oxidative stress. In experi-
mental hypertension, naringenin decreased blood pressure,
ROS, proteinuria, plasma levels of vasodilation converting
enzyme (VCE), α-1A adrenergic receptor (α-ADR) activation,
and angiotensin. In contrast, naringenin increased SOD and
NO levels in serum and vascular endothelial cells (Figure 3).
Also, the serum levels of IL-2, IL-6, and TNF-α were decreased,
while IL-10 was increased. Interestingly, naringenin inhibited
Janus kinase 2/signal transducer and activator of transcription
3 (JAK2/STAT3) signaling by suppressing Src homology region
2 (SH-2) domain-containing phosphatase 1 (SHP-1) expression
in vascular endothelial cells [65]. Additional protective effects
of naringenin on kidney damage may stem from its capacity to
regulate vascular tone by influencing enzymes responsible for
metabolizing vasoactive substances and hypertensive mecha-
nisms. In experimental models of NO-dependent hypertension,
naringenin treatment reduced the expression of Ang II convert-
ing enzyme type 1 (ACE1), Ang II synthesis, oxidative stress, kid-
ney damage, and cardiac hypertrophy. However, at the systemic
level, it did not reduce blood pressure or plasma concentrations
of Ang II [66, 67]. On the other hand, in a model of renovascular
hypertension (2-kidney 1-clip [2K1C]), treatment with narin-
genin decreased plasma concentrations of Ang II and lowered
the expression of ACE II in the kidney, but it increased the
expression of the Ang II type II receptor (AT2R) [68]. Therefore,
based on the available literature, the antihypertensive effects
of naringenin through the modulation of RAAS are inconclu-
sive, and additional investigations are required to elucidate the
conflicting results.
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Figure 3. Cell mechanism involved in the nephroprotective effects of naringenin. Naringenin reduces oxidative stress by inhibiting the activity of
enzymes that produce ROS, such as NADPH oxidase, and by improving mitochondrial function. Indirectly, through its anti-inflammatory effects and
modulation of the expression of antioxidant enzymes, naringenin blocks ROS production, fibrosis, and inflammation. Ang II: Angiotensin II; ATR1: Angiotensin
II type 1 receptor; ARE: Antioxidant response element; CAT: Catalase; eNOS: Endothelial NO synthase; GPX: Glutathione peroxidase; JAK2: Janus kinase 2;
Keap1: Kelch-like ECH-associated protein 1; Nar: Naringenin; NO: Nitric oxide; NADPH: Nicotinamide adenine dinucleotide phosphate; Nrf2: Nuclear factor
erythroid 2-related factor 2; NF-κB: Nuclear factor kappa B; PKC: Protein kinase C; PPAR: Peroxisome proliferator-activated receptors; ROS: Reactive oxygen
species; TNF-α: Tumor necrosis factor-alpha; TGF-β: Transforming growth factor beta; SOD: Superoxide dismutase; STAT3: Signal transducer and activator
of transcription 3.

However, other studies have explored other mechanisms
involved in regulating vascular tone and renal protection.
In diabetic mice, administering naringenin improved fasting
blood glucose (FBG) and reduced renal damage, as demon-
strated by lowering blood urea nitrogen (BUN), serum crea-
tinine, and urinary albumin [69]. The renoprotective effects
of naringenin at the structural level include the attenuation
of renal tubule dilation, vacuolated lesions, mesangial expan-
sion, thickening of GBM, renal hypertrophy, and glomeru-
lar changes [69]. At the molecular level, naringenin upreg-
ulated peroxisome proliferator-activated receptors (PPARα,
PPARβ, and PPARγ) and cytochrome P450 isoform 4A (CYP4A)
expressions, while the levels of 20-hydroxyeicosatetraenoic
acid (20-HETE) in serum were restored [69]. Through in vitro
assays, the effects of naringenin were also evaluated, confirm-
ing the observations made in animal models [69]. 20-HETE
contributes to regulating kidney function, blood pressure, and
vascular tone. Thus, naringenin might enhance renal function
by improving kidney hemodynamics in diabetes. In an exper-
imental model of gestational hypertension, treatment with
naringenin decreased hypertension, serum markers of oxidant
stress, inflammation, and serum concentrations of Ang II and
ET-1, while NO and SOD were increased (Figure 3) [65]. The pro-
tective effect of naringenin in endothelial dysfunction has been
further demonstrated using aortic rings from diabetic animals,

preserving endothelial function and vascular reactivity via a
NO-dependent mechanism [70].

Another protective effect of naringenin on the kidneys
includes a decrease in proteinuria, renal and glomerular hyper-
trophy, along with a reduction in the expression of type IV colla-
gen (Col IV) and fibronectin. It also modulates the TGF-β/Smad
pathway both in vivo and in vitro [71]. In an experimental model
of obesity-associated hypertension, naringenin treatment led to
reductions in body weight and blood pressure while regulating
lipid parameters by lowering total cholesterol, triglycerides,
and LDL-c, and increasing HDL-c levels. Moreover, naringenin
reduced serum levels of MDA, NO, and leptin, while increasing
serum levels of SOD and adiponectin [72].

Also, in diabetic mice, naringenin administration reduced
hyperglycemia, albuminuria, and BUN, while increasing
insulin and creatinine clearance through anti-inflammatory
mechanisms. Inflammation was mitigated through the modula-
tion of TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1
(MCP-1), and NF-κB expressions in renal tissue. Furthermore,
naringenin exhibited antifibrotic effects by downregulating
the expression of Col IV, fibronectin, and TGF-β1 in the kidney
(Figure 3) [73].

On the other hand, in the heart of diabetic animals narin-
genin prevented cardiac remodeling and fibrosis by reduc-
ing oxidative stress through modulation of NADPH oxidase
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(NADPHox) and SOD activities, as well as the regulation of
the expression of protein kinase C (PKC) and p38α [74]. These
effects were associated with improved FBG and reduced poly-
dipsia and body weight loss [74].

Hyperuricemia is a prevalent chronic metabolic condition
often associated with diabetes, metabolic syndrome, and hyper-
tension, all closely linked to CKD. Naringenin has demonstrated
the ability to reduce serum uric acid levels in a dose-dependent
manner, likely by enhancing uric acid elimination in urine.
Furthermore, naringenin reduced the expression of glucose
transporter type 9 (GLUT9) by inhibiting the phosphatidylinos-
itol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway
and enhanced the expression of adenosine triphosphate (ATP)-
binding cassette efflux transporter G2 (ABCG2) mediated by
modulation of PDZK1 abundance. The naringenin-induced uri-
cosuric effect was associated with a decrease in IL-6 and TNF-α,
which contribute to the inhibition of the TLR4/NF-κB signal-
ing pathway [75]. Another study in an experimental model
of kidney damage induced by hyperuricemia reported that
naringenin reduced hyperuricemia, TNF-α, NF-κB, Cit C, and
8-OHdG, but increased glutathione peroxidase [76]. The protec-
tive effects of naringenin in hyperuricemia were also observed
in liver tissue through the same mechanisms [77].

Conversely, the dysregulation of vasoactive substances
and oxidative stress is pivotal in aging, a significant car-
diovascular risk factor. Research conducted in an aging
model revealed that naringenin safeguarded the heart against
ischemia-reperfusion injury. The protective effects were
mediated by the improvement in mitochondrial membrane
potential, cardiac function, and reduction of myocardial infarct
area [78]. Another investigation demonstrated the cardio-
protective properties of naringenin in diabetes, attributed to
the upregulation of CYP2J3 expression, leading to increased
levels of epoxyeicosatrienoic acids (EETs), and the activation
of peroxisome proliferator-activated receptors (PPARs). These
mechanisms collectively contributed to the attenuation of car-
diac hypertrophy [79]. Another study reported that naringenin
increased SOD activity, but decreased MDA level, NOX2 expres-
sion, and MAPK signaling pathway, which improved cardiac
function and decreased fibrosis and hypertrophy [80]. Cardiac
hypertrophy, a form of cardiovascular disorder associated with
diabetes and CKD, poses an elevated cardiovascular risk for
patients, leading to conditions, such as coronary artery disease,
heart failure, arrhythmias, and sudden cardiac death [81].
Hence, naringenin’s antioxidant and anti-remodeling proper-
ties could potentially provide therapeutic benefits for both the
heart and kidneys.

Discussion
Historically, traditional medicine has been utilized as an alter-
native therapeutic option for healing several illnesses. Evidence
of therapeutic effects has been obtained from preclinical studies
using experimental models and pilot studies in patients. These
results indicate the presence of various compounds of natu-
ral origin with biological activity, responsible for the observed
therapeutic effects [35, 82, 83]. Such is the case of naringenin,

a compound that has demonstrated several cytoprotective bio-
logical activities, suggesting its potential as a therapeutic coad-
juvant option for diabetes [36, 38, 39].

Oxidative stress has been described as one of the main con-
tributors to endothelial dysfunction and hypertension during
diabetes. Both diseases often coexist and increase the risk of
developing micro- and macrovascular complications, including
CKD and death from cardiovascular causes [84]. Further, hyper-
tension is a prevalent comorbidity in patients with CKD and
worsens with the decline in renal function. Therefore, thera-
peutic strategies for diabetes must be focused on controlling
oxidative stress, endothelial dysfunction, inflammation, and
hypertension, in addition to strict blood glucose control, to con-
tribute overall to slowing the progression of CKD [32, 85, 86].

To this respect, naringenin has demonstrated antioxidant
effects by directly acting as a ROS scavenger [87, 88], and
indirectly through the inhibition of the activity of enzymes
that produce ROS, including NADPH oxidase and myeloper-
oxidase (MPO) [60, 65, 88]. It also modulates the expres-
sion of the antioxidant enzymes including SOD, and CAT
(Figure 3) [59, 60, 74]. Another antioxidant effect of naringenin
may be indirectly mediated by its immunomodulatory effects
(Figure 3) [54, 65, 73, 75, 89]. These effects were observed on
TNF-α, CD68, and IL-1β, and were mediated through the regu-
lation of phosphorylation of NF-κB p65, JNK, and ERK related
to inflammation, as well as Bcl2, Bax, p53, apoptotic factor poly
(ADP-ribose) polymerase 1 (c-PARP), and caspases 3, 8, and 9,
which are linked to apoptotic signaling in the pancreas [53].

Naringenin’s anti-inflammatory properties might offer
therapeutic potential by mitigating oxidative stress and
disrupting the detrimental cycle of inflammation and oxida-
tive stress, which contribute to kidney dysfunction and
CKD [85, 86, 90, 91].

Another indication of naringenin’s potential as a beneficial
treatment option for diabetic nephropathy is its ability to mod-
ulate vascular tone and the synthesis of vasoactive substances.
These include NO, Ang II, endothelin, EETs, and 20-HETEs
[65–69]. Equally significant are its effects on mechanisms asso-
ciated with tissue remodeling, such as reducing the expression
of TGF-β, Col IV, and fibronectin [71, 73].

As of now, there have been no interventional studies
conducted using naringenin for the treatment of diabetic
nephropathy. However, promising outcomes have been
observed in other conditions. For instance, naringenin inhib-
ited tumor growth in osteosarcoma patients and decreased
the recurrence rate. It also led to reductions in IL-1β and IL-6
levels, as well as ROS levels compared to the placebo group,
while elevating SOD and glutathione (GSH) levels in plasma in
a time-dependent manner [92].

There is some understanding regarding the safe doses of
naringenin for human consumption. In a single-ascending-
dose randomized crossover trial assessing naringenin’s safety,
it was reported that doses ranging from 150 to 900 mg/day
are safe for healthy adults, with serum concentrations show-
ing proportionality to the administered dose. A dose of narin-
genin at 8 μM was found to be effective in primary human
adipocytes. Ingesting 300 mg of naringenin twice daily will
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likely produce a physiological effect [93]. Once administered,
naringenin is absorbed in the gastrointestinal tract and subse-
quently distributed in the blood, lungs, trachea, liver, and kid-
neys, although its bioavailability is approximately 15% [94, 95].
The metabolism of naringenin is carried out in the liver through
processes of oxidation, demethylation, glucuronidation, sulfa-
tion, or methylation and it is finally excreted by the kidney and
eliminated in urine [96].

Variations in the effects of naringenin could stem from dif-
ferences across trials, including variations in the source, purity,
vehicle, doses, and duration of intervention. Moreover, the
absence of standardized protocols for administration further
complicates interpretation. On the other hand, the consump-
tion of fruit juice as a source of naringenin should be avoided
because other compounds in the juice can interfere with the
activity of the drugs and cause side effects, such as with the
success of statins [47]. The limitations of this work include a
lack of in-depth exploration of the side effects on target organs
and the underlying cellular mechanisms. This is due to the
primary focus of this review being on highlighting the beneficial
effects of naringenin and promoting its potential as a thera-
peutic option. Regrettably, current interventions to treat dia-
betic nephropathy have shown limited success, at best delaying
disease progression to its advanced stages. Consequently, there
is an urgent need for novel preventive or efficacious options.
Recently, other therapeutic targets in diabetes have emerged:
the preservation of endothelial function and the management
of dyslipidemia, oxidative stress, inflammation, and fibrosis.

Conclusion
Through direct mechanisms and the modulation of signaling
pathways, naringenin exhibits beneficial effects that include
antihyperglycemic, antioxidant, anti-inflammatory, anti-
remodeling, and antihypertensive properties. Experimental
models of renal damage have demonstrated that naringenin
protects endothelial and renal function, thus slowing the
progression of renal disease. Additionally, there have been no
reports of adverse effects in humans. Therefore, naringenin
shows promise as a therapeutic option for diabetes-induced
comorbidities. Nonetheless, further clinical studies are
required to validate its efficacy as either a primary or adjunctive
medication.
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