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R E S E A R C H A R T I C L E

Artificial intelligence-assisted measurements of coronary
computed tomography angiography parameters such as
stenosis, flow reserve, and fat attenuation for predicting
major adverse cardiac events in patients with coronary
arterial disease
Cheng Luo 1#, Liang Mo 1#, Zisan Zeng 1, Muliang Jiang 1∗ , and Bihong T. Chen 2

Advancements in artificial intelligence (AI) offer promising tools for improving diagnostic accuracy and patient outcomes in
cardiovascular medicine. This study explores the potential of AI-assisted measurements in enhancing the prediction of major adverse
cardiac events (MACE) in patients with coronary artery disease (CAD). We conducted a retrospective cohort study involving patients
diagnosed with CAD who underwent coronary computed tomography angiography (CCTA). Participants were classified into MACE and
non-MACE groups based on their clinical outcomes. Clinical characteristics and AI-assisted measurements of CCTA parameters,
including CT-derived fractional flow reserve (CT-FFR) and fat attenuation index (FAI), were collected. Both univariate and multivariable
logistic regression analyses were performed to identify independent predictors of MACE, which were used to build predictive models.
Statistical analyses revealed three independent predictors of MACE: severe stenosis, CT-FFR ≤ 0.8, and mean FAI (P < 0.05). Seven
predictive models incorporating various combinations of these predictors were developed. The model combining all three predictors
demonstrated superior performance, as evidenced by the receiver operating characteristic (ROC) curve, with an area under the curve
(AUC) of 0.811 (95% confidence interval [CI] 0.774–0.847), a sensitivity of 0.776, and a specificity of 0.726. Our findings suggest that
AI-assisted CCTA analysis, particularly using fractional flow reserve (FFR) and FAI, could significantly improve the prediction of MACE in
patients with CAD, thereby potentially aiding clinical decision making.
Keywords: Coronary computed tomography angiography (CCTA), artificial intelligence (AI), coronary artery disease (CAD), major
adverse cardiac events (MACE).

Introduction
Coronary artery disease (CAD) is a prevalent cardiovascu-
lar condition characterized by atherosclerotic lesions within
coronary arteries, leading to stenosis and compromised blood
flow, ultimately resulting in myocardial ischemia and cardiac
events [1, 2]. Major adverse cardiac event (MACE) encompasses
unstable angina, nonfatal myocardial infarction, and cardiac
death [3]. Extensive research has explored various risk factors
associated with MACE in patients with CAD, including gender,
age, hypertension, and lipid profiles, to facilitate timely inter-
ventions and to enhance patient outcomes [4, 5].

Coronary computed tomography angiography (CCTA) is a
valuable non-invasive imaging modality providing detailed
information on coronary artery anatomy, plaque morphology,
and luminal stenosis, enabling risk assessment and prognosis

evaluation in patients with CAD [6–10]. While CCTA has proven
its utility in assessing patients with moderate to severe CAD,
advanced parameters, such as fractional flow reserve (FFR) and
peri-coronary fat attenuation index (FAI) used to evaluate coro-
nary hemodynamics and vascular inflammation have not been
adequately assessed on conventional CCTA [11–14].

Artificial intelligence (AI) has gained increasing recogni-
tion in cardiac imaging for evaluating cardiac function and
coronary arteries. AI’s integration into CCTA has propelled the
capabilities in predicting and managing MACE in patients with
CAD [15]. AI automates coronary artery segmentation, enhanc-
ing CCTA image interpretation, reducing processing times, and
lessening reliance on expert radiologists [16]. It also aids in
calculating the coronary artery calcium score (CACS), crucial
for assessing disease risk by automating the identification and
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quantification of calcifications [16]. Additionally, AI improves
the evaluation of coronary plaque characteristics and stenosis,
FFR, and FAI, supporting early disease detection and helping
prevent severe outcomes [17–21]. However, the application of AI
in clinical settings, especially for measuring CCTA parameters
predictive of MACE, is still emerging [22].

In this study, we used the AI algorithm to measure a spec-
trum of CCTA parameters, including coronary artery anatomy,
FFR, and FAI, in a retrospective cohort of patients with CAD.
Our objective was to identify risk factors and to build models for
predicting MACE, potentially facilitating timely interventions,
and improving outcomes for patients with CAD.

Materials and methods
Patient population
The retrospective study included patients diagnosed with CAD
who exhibited moderate or severe stenosis in one or more
of the three coronary artery trunks based on coronary CCTA
findings [23]. Moderate stenosis was defined as luminal diam-
eter stenosis equal to or exceeding 50% but less than 70%. In
comparison, severe stenosis was defined as luminal diameter
stenosis equal to or exceeding 70% but less than 90% [24]. This
patient cohort was enrolled retrospectively at the First Affili-
ated Hospital of Guangxi Medical University, P.R. China, from
January 2012 to December 2021.

We focused on the patients with moderate and severe steno-
sis first because the patients with moderate and severe coronary
arterial stenosis were more likely to be symptomatic due to
myocardial ischemia and cardiac dysfunction [24]. This popula-
tion of patients was more likely in need of urgent diagnosis and
treatment for cardiac events as compared to patients with mild
stenosis. This also made the AI-assisted CCTA parameter mea-
surements with prompt data analysis and predictive modeling
of potential cardiac events being more relevant to clinical sce-
narios. Second, by focusing and comparing patients with mod-
erate and severe stenosis, more research could be performed to
assess the impact of different degrees of stenosis on the prog-
nosis of patients with CAD [25]. Exclusion criteria were set in
the study design to ensure a sufficient cohort for data analysis.
Patients with the following criteria were excluded: insufficient
image quality, CCTA scans not processible by the AI software,
previous coronary or cardiac interventions, incomplete medi-
cal records, acute coronary syndrome upon initial CCTA scan,
loss to follow-up, poor medical adherence or non-cardiac death
prior to follow-up. Patients were categorized into the MACE
group and the non-MACE group based on the occurrence of
MACE. The inclusion and exclusion criteria for this study
are shown in Figure 1. Patient demographic and clinical data,
including gender, age, height, weight, body mass index (BMI),
smoking history, family history of CAD, and comorbidities such
as diabetes, hyperlipidemia, and hypertension, were extracted
from medical records (Table 1).

All patients diagnosed with symptomatic CAD who under-
went CCTA during the study period were eligible for inclusion.
Patient follow-up data were collected through electronic med-
ical record reviews and telephone interviews. Patients were

monitored through electronic medical records and telephone
follow-ups. The physician was not aware of the initial CCTA
results during these follow-up visits. The primary endpoint was
the occurrence of MACE. For patients who experienced MACE,
the follow-up period was defined as the duration from the first
CCTA examination to the onset of the first MACE. For those who
did not experience MACE, the follow-up extended from the first
CCTA examination to the date of the last telephone communi-
cation. In cases where multiple MACE occurred, the date of the
initial MACE was considered the endpoint for follow-up [26].
MACE was identified when one or more of the following con-
ditions were present: readmission due to unstable angina, with
or without target vessel revascularization, nonfatal myocardial
infarction, or cardiac death [3].

Coronary computed tomography angiography (CCTA) imaging
and analysis
CCTA images were acquired with five different CT scanners,
including GE LightSpeed VCT (USA), Siemens SOMATOM Force
(Germany), Siemens SOMATOM Definition Edge (Germany),
Siemens SOMATOM Definition Flash (Germany), and GE Rev-
olution CT (USA). A tube voltage of 120 kV was consistently
employed for CT image acquisition to optimize the accuracy of
FAI measurements [27].

The best time-phase images from the cardiac cycle in the
CCTA dataset were selected and uploaded to the ShuKun
Smart Medical Platform (Shukun (Beijing) Technology Co., Ltd.,
China) [28]. The AI models used for measuring CCTA parame-
ters were built in the ShuKun Smart Medical Platform and the
platform’s CoronaryDoc (version 5.0) software. The Shukun AI
platform incorporated multiple deep learning compound net-
works. The technology featured optimal path detection capa-
bilities, which allowed for the fully automatic segmentation
and extraction of even third and fourth-level distal arterial
vessels [28]. The platform’s CoronaryDoc (version 5.0) software
was used for an initial assessment of coronary arteries. This
assessment included determining the number of diseased ves-
sels, identifying the vessel segment with the narrowest plaque,
quantifying plaque volume, and evaluating the degree of steno-
sis (Figure 2). Plaques were categorized as high risk if they
exhibited at least two of the following characteristics [29]: low
attenuation plaque (LAP) with a central region attenuation
density <30 Hounsfield units (Hu), positive remodeling (PR)
with a ratio of the cross-sectional area of the vessel at the
point of maximum stenosis to the average of the proximal and
distal cross-sectional areas of the lesion being ≥ 1.1, napkin
ring sign (NRS) characterized by a high-density halo around
a low-density plaque (Hu ≤ 130), and spotty calcification (SC)
denoting point-like calcification within the vessel wall < 3 mm
in diameter and density >130 Hu, surrounded by non-calcified
plaque.

The platform’s Shukun-FFR (version 0.7) software was uti-
lized to measure CT-derived FFR (CT-FFR) values [30]. The
measurement location was manually selected at a point 2–3 cm
distal to the narrowest part of the plaque (Figure 3) [31]. When
CT-FFR values were ≤ 0.8, the case was considered positive and
associated with a high risk for MACE [32].
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Patients with CAD hospitalized at Guangxi Medical University and
underwent baseline CCTA with a tube of 120 kV voltage
(n = 1546)

Insufficient image quality of CCTA (n = 115)
Patients with previous percutaneous coronary intervention,
coronary artery bypass graft, pacemaker placement, or heart
valve replacement (n = 29)
Cases that AI software could not  recognize or calculate (n = 13)
Cases with incomplete inpatient medical record information (n = 176)
Patients with clinical suspicion of acute coronary syndrome at the
time of the first CCTA examination during hospitalization (n = 49)
Patients who were lost to follow-up, had poor medical adherence, or
had non-cardiac death prior to follow-up (n = 373).

The enrolled 790 cases were divided into MACE
group (n = 165) and non-MACE group (n = 625)

Assessing the degree
of coronary stenosis

Measuring
CT–FFR values

Measuring
FAI values

Analysis and comparison of the predictive value of stenosis,
CT–FFR, FAI, stenosis + CT–FFR, stenosis + FAI, CT–FFR + FAI,
and stenosis + CT–FAI + FAI models for the occurance of MACE

Figure 1. Flow diagram of study cohort enrollment. CAD: Coronary artery disease; CCTA: Coronary computed tomography angiography; AI: Artificial
intelligence; MACE: Major adverse cardiac events; non-MACE: Without major cardiovascular events; CT-FFR: CT-derived fractional flow reserve; FAI: Fat
attenuation index.

Table 1. Comparison of clinical data between the MACE and the non-MACE group

Clinical data MACE group (n = 165) Non-MACE group (n = 625) t/χ2 P

Age (years), mean ± SD 66.2 ± 11.0 66.1 ± 10.5 −0.229 0.819

Male, n (%) 128 (77.58) 399 (63.84) 11.090 0.001∗

BMI (kg/m2), median (range) 24.49 (22.21–26.67) 24.28 (22.32–26.64) −0.162 0.871

Smoking history, n (%) 63 (38.18) 231 (36.96) 0.083 0.773

Family history of CAD, n (%) 15 (9.09) 57 (9.12) <0.001 0.991

Diabetes, n (%) 74 (44.85) 253 (40.48) 1.027 0.311

Hyperlipidemia, n (%) 38 (23.03) 156 (24.96) 0.262 0.608

Hypertensive disease, n (%) 129 (78.18) 485 (77.60) 0.026 0.873

*Indicates a statistically significant difference (P < 0.05). MACE: Major adverse cardiac events; non-MACE: Without major adverse cardiac events; BMI:
Body mass index; CAD: Coronary artery disease; SD: Standard deviation.

FAI values and the volume of peri-coronary adipose tis-
sue (PCAT) were quantified using the platform’s Shukun-FAI
(version 1.3) software [33]. Initially, the system automatically
computed FAI values in the three primary coronary arteries:
the right coronary artery (RCA), the left anterior descending
(LAD) branch, and the left circumflex (LCx) branch (Figure 4A).
Measurements for LAD and LCx extended from the beginning
of the vessel to the distal 40 mm, while RCA measurements

spanned from 10 mm to the distal 50 mm with a 4-mm extension
to the outer vessel wall [24]. Using a similar approach, the
average FAI value across the three main coronary arteries was
calculated, along with FAI values specifically around lesioned
plaques (Figure 4B). The measurement length corresponded
to the plaque length, and the extension distance to the outer
vessel wall matched the diameter of the diseased vessel. FAI
measurements included voxels with attenuation values ranging
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Figure 2. Assessment of coronary artery stenosis on CCTA. (A) Repre-
sentative CCTA image showing the reconstructed bit images of coronary
arteries; (B) Schematic diagram showing the measurement of the coronary
stenosis represented by the luminal diameter stenosis rate as the ratio of
the luminal diameter at the narrowest point to the luminal diameter of
the normal vessels at both ends; (C) Color-coded rendering of the different
components of a lesion plaque (yellow indicates the fiber component of the
plaque, and red indicates the lipid component of the plaque). CCTA: Coronary
computed tomography angiography; LAD: Left anterior descending branch;
D1: First diagonal branch; D2: Second diagonal branch; LCx: Left circumflex;
OM1: First obtuse marginal ramus; OM2: Second obtuse marginal ramus;
RCA: Right coronary artery; R-PDA: Right posterior descending branch; LM:
Left main coronary artery; mLAD: Middle section of left anterior descending
branch.

from −190 to −30 Hu [24]. Additionally, the PCAT volume
surrounding the lesioned plaque was automatically determined
during FAI measurements.

The AI model in our study employed a deep learning archi-
tecture from the Shukun AI platform specifically designed for
image analysis. Our AI model was trained using a dataset com-
prising CCTA images from a diverse cohort of patients diag-
nosed with CAD. This dataset was collected retrospectively from
our hospital, including scans from January 2012 to December
2021. The dataset included over 790 CCTA scans reflecting a
broad spectrum of patient demographics and disease severities.
This diversity in the dataset helped in enhancing the model’s
generalizability across different patient populations. The CCTA
scans in the dataset were annotated by expert radiologists,
providing a reliable ground truth for training the AI model.
To prepare the data for training, all CCTA scans were re-sized
and normalized to ensure uniformity in image quality and res-
olution, which was crucial for maintaining consistency in AI
training.

Predictive model development
There were a number of known risk factors for the occurrence
of MACE in patients with CAD, such as age, male, BMI, smoking
history, family history of CAD, diabetes, hyperlipidemia, and
hypertensive disease and we compared these variables between

Figure 3. Representative measurement of FFR values on CCTA using an
AI software. In the coronary dendrogram displayed on the AI software, the
closer the vessel color is to blue, the higher the FFR value, the closer the
vessel color is to red, the lower the FFR value. In this representative case,
the FFR value is 0.56, measured at the narrowest part of the lesion plaque,
about 2–3 cm from the vessel’s origin. FFR: Flow reserve fraction; CCTA:
Coronary computed tomography angiography; AI: Artificial intelligence; LAD:
Left anterior descending branch; D1: First diagonal branch; D2: Second
diagonal branch; LCx: Left circumflex; OM1: First obtuse marginal ramus;
OM2: Second obtuse marginal ramus; RCA: Right coronary artery; R-PDA:
Right posterior descending branch; mLAD: Middle section of left anterior
descending branch.

the MACE group and the non-MACE group as presented in
Table 1. In addition, we also analyzed and compared the CCTA
imaging data between the two groups (Table 2). The signifi-
cant variables from these analyses were subjected to univariate
logistic regression analysis (Table 3). Subsequently, the signifi-
cant variables from the univariate analysis were then included
in the multivariate logistic regression analysis (Table 4). When
there was a linear correlation between the significant vari-
ables, the analysis was conducted using the stepwise method
in multivariate logistic regression analysis for the identification
of independent predictors. Three predictive models were built
using only one of the independent predictors. The remaining
four models were built with all possible combinations of the
independent predictors. The SPSS 25.0 software (IBM, Armonk,
NY, USA) was used to perform receiver operating character-
istic (ROC) curve analysis to obtain the area under the curve
(AUC) value for assessing the predictive performance of each
model for MACE. We used Medcalc 20.218 software (MedCalc
Software Ltd., Belgium) to test the differences among the AUC
values using the DeLong test. Statistical significance was set at
P < 0.05.

Ethical statement
The ethical approval for this study was obtained from The Med-
ical Ethics Committee of First Affiliated Hospital of Guangxi
Medical University (IRB: 2023-E217-01).

Statistical analysis
Statistical analyses were performed using SPSS 25.0 (IBM,
Armonk, NY, USA) and Medcalc 20.218 software (MedCalc
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Figure 4. Representative measurement of FAI values of the PCAT using an AI software. (A) Automatic AI calculation of the FAI values around the three
coronary arteries: The closer the color is to red, the higher the FAI value, the closer the color is to yellow, the lower the FAI value; (B) Automatic AI calculation
of the FAI value and the plaque PCAT volume after manually selecting the lesion plaque range. FAI: Fat attenuation index; PCAT: Peri-coronary adipose tissue;
AI: Artificial intelligence; LM: Left main coronary artery; LAD: Left anterior descending branch.

Table 2. Comparison of CCTA imaging data between the MACE and the non-MACE group

Image data MACE group (n = 165) Non-MACE group (n = 625) t/χ2 P

Number of diseased vessels 9.796 0.007∗

1, n (%) 63 (38.18) 318 (50.88)
2, n (%) 69 (41.82) 225 (36.00)
3, n (%) 33 (20.00) 82 (13.12)

Distribution of major lesion vessel 4.393 0.111

RCA, n (%) 48 (29.09) 170 (27.20)
LAD, n (%) 94 (56.97) 399 (63.84)
LCx, n (%) 23 (13.94) 56 (8.96)

Stenosis degree 61.659 <0.001∗

Severe stenosis, n (%) 117 (70.91) 230 (26.80)
Moderate stenosis, n (%) 48 (29.09) 395 (63.20)
High-risk plaque, n (%) 68 (41.21) 167 (26.72) 13.119 <0.001∗
LAP, n (%) 21 (12.73) 38 (6.08)
PR, n (%) 93 (56.36) 338 (54.08)
NRS, n (%) 25 (15.15) 73 (11.68)
SC, n (%) 75 (45.45) 189 (30.24)
The volume of major lesion plaque (mm3), median (range) 22.01 (8.92–43.09) 19.55 (7.96–44.85) −0.466 0.641
PCAT volume of the main lesion plaque (mm3), median (range) 354 (200–668) 427 (273–664) 1.404 0.161

CT-FFR 96.966 <0.001∗

CT-FFR ≤ 0.8, n (%) 140 (84.85) 261 (41.76)
CT-FFR > 0.8, n (%) 25 (15.15) 364 (58.24)
FAI around the major lesion plaque (Hu), mean ± SD −72.44 ± 12.29 −78.23 ± 13.06 −5.127 <0.001∗
RCA-FAI (Hu), mean ± SD −72.37 ± 10.82 −78.46 ± 11.20 −6.258 <0.001∗
LAD-FAI (Hu), mean ± SD −73.70 ± 9.20 −78.64 ± 7.48 −7.180 <0.001∗
LCx-FAI (Hu), mean ± SD −70.49 ± 9.13 −74.63 ± 7.28 −6.129 <0.001∗
Mean FAI (Hu), mean ± SD −72.19 ± 8.64 −77.24 ± 6.89 −6.956 <0.001∗

*Indicates a statistically significant difference (P < 0.05). CCTA: Coronary computed tomography angiography; MACE: Major adverse cardiac events; non-
MACE: Without major adverse cardiac events; RCA: Right coronary artery; LAD: Left anterior descending branch; LCx: Left circumflex; LAP: Low attenuation
plaque; PR: Positive remodeling; NRS: Napkin ring sign; SC: Spotty calcification; PCAT: Pericoronary adipose tissue; CT-FFR: CT derived fractional flow
reserve; FAI: Fat attenuation index: Hu: Hounsfield unit.

Software Ltd., Belgium). Normally distributed continu-
ous variables were expressed as mean ± standard devia-
tion, and differences between groups were assessed using
two-sample t-tests. Non-normally distributed continuous
variables were presented as a median and interquartile

range, with between-group differences analyzed using the
Mann–Whitney U test. Categorical variables were described
using counts and percentages, and group comparisons were
conducted using the χ2 test. Statistical significance was set
at P < 0.05.
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Table 3. Univariate logistic regression analysis of significant variables

Characteristics OR 95% CI P

Male 1.959 1.313–2.925 0.001∗

The number of diseased vessels: 1 – – –

The number of diseased vessels: 2 1.548 1.057–2.268 0.025∗

The number of diseased vessels: 3 2.031 1.249–3.303 0.004∗

Severe stenosis 4.186 2.882–6.080 <0.001∗

High-risk plaque 1.923 1.345–2.748 <0.001∗

CT-FFR ≤ 0.8 7.810 4.959–12.301 <0.001∗

FAI around the major lesion plaque (Hu) 1.037 1.021–1.053 <0.001∗

RCA-FAI 1.057 1.037–1.077 <0.001∗

LAD-FAI 1.085 1.059–1.111 <0.001∗

LCx-FAI 1.072 1.048–1.098 <0.001∗

Mean FAI 1.098 1.071–1.127 <0.001∗

*Indicates a statistically significant difference (P < 0.05). CT-FFR:
CT-derived fractional flow reserve; FAI: Fat attenuation index; RCA: Right
coronary artery; LAD: Left anterior descending branch; LCx: Left circumflex;
OR: Odds ratio.

Table 4. Multivariate logistic regression analysis

Characteristics OR 95% CI P

Severe stenosis 2.695 1.766–4.114 <0.001∗

CT-FFR ≤ 0.8 5.186 3.177–8.466 <0.001∗

Mean FAI 1.094 1.065–1.124 <0.001∗

*Indicates a statistically significant difference (P < 0.05). CT-FFR:
CT-derived fractional flow reserve; FAI: Fat attenuation index; OR: Odds
ratio; CI: Confidence interval.

Results
Comparison of clinical data and CCTA imaging data between the
MACE group and the non-MACE group
In the cohort of 790 patients enrolled into the study for anal-
ysis, 165 patients (20.9%) were in the MACE group, while 625
patients (79.1%) were in the non-MACE group. The details for
the patients within the MACE group included 152 patients
admitted for unstable angina, 4 for nonfatal myocardial infarc-
tion, and 9 for cardiac deaths. The median follow-up dura-
tion for the MACE group was 30 months, ranging from 7 to
121 months. In contrast, the non-MACE group had a median
follow-up of 47 months, ranging from 13 to 131 months. A signifi-
cant difference was observed in gender distribution, the MACE
group had a significantly higher proportion of males than the
non-MACE group (P < 0.001). However, other factors, such as
age, BMI, smoking history, family history of cardiac events, and
comorbidities did not show significant differences between the
two groups (all P > 0.05) (Table 1).

The results from AI-enhanced CCTA imaging measurements
are presented in Table 2. Several CCTA parameters exhib-
ited statistically significant differences between the MACE and
non-MACE groups (P < 0.05). However, some lesion-specific
metrics such as the distribution of major lesion vessels and the
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Figure 5. ROC curves of models for predicting MACE. ROC: Receiver
operating characteristic; MACE: Major adverse cardiac events; CT-FFR:
CT-derived fractional flow reserve; FAI: Fat attenuation index.

volume of major lesion plaques were not significantly different
between the two groups (all P > 0.05).

Logistic regression analyses of the factors influencing MACE
Through univariate logistic regression, an array of factors was
noted with significant differences between the two groups,
such as male sex, number of diseased vessels, severe steno-
sis, high-risk plaque, CT-FFR ≤ 0.8, and FAI around the major
lesion plaque (Tables 1 and 2). Table 3 summarized these factors
alongside their odds ratios (OR) and 95% confidence intervals
(CI). Upon progressing to multivariate logistic regression anal-
ysis, three variables were identified as key independent predic-
tors for MACE: severe stenosis, CT-FFR ≤ 0.8, and mean FAI
(Table 4).

Predictive models and their performance assessment
We constructed seven distinctive predictive models, leveraging
the three predictors mentioned above in various combinations.
Among these, the integrated model combining severe stenosis,
CT-FFR ≤ 0.8, and mean FAI had the most robust performance.
It attained an AUC of 0.811, a sensitivity of 0.776, and a speci-
ficity of 0.726 as presented in Figure 5 and Table 5.

Discussion
This study assessed the AI-assisted CCTA measurements for the
assessment of independent risk factors for MACE in patients
with CAD. We identified three independent predictors: severe
stenosis, CT-FFR ≤ 0.8, and mean FAI. The predictive models
built with all three predictors had robust performance in dis-
tinguishing the MACE group from the non-MACE group.

Our study results regarding the independent predictors for
MACE were mostly consistent with the literature [4, 5, 34].
However, there were also divergent findings in our study when
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Table 5. Data from receiver operating characteristic curve analysis of the models for predicting major adverse cardiac events

Characteristics Cut off value AUC (95% CI) Sensitivity Specificity PLR NLR

Severe stenosis 0.671 (0.625–0.716) 0.709 0.632 1.927 0.460

CT-FFR ≤ 0.8 0.715 (0.675–0.756) 0.848 0.582 2.029 0.261

Mean FAI −73.24 Hu 0.689 (0.638–0.740) 0.606 0.738 2.313 0.534

Severe stenosis + CT-FFR ≤ 0.8 0.758 (0.720–0.795) 0.848 0.582 2.029 0.261

Severe stenosis + mean FAI 0.765 (0.724–0.805) 0.824 0.570 1.916 0.309

CT-FFR ≤ 0.8 + mean FAI 0.793 (0.752–0.833) 0.824 0.622 2.180 0.283

Severe stenosis + CT-FFR ≤ 0.8 + mean FAI 0.811 (0.774–0.847) 0.776 0.726 2.832 0.308

CT-FFR: CT-derived fractional flow reserve; FAI: Fat attenuation index; AUC: Area under the curve; CI: Confidence interval; PLR: Positive likelihood ratio;
NLR: Negative likelihood ratio.

compared to the published studies. For instance, our study
did not identify the high-risk plaque as a predictor of MACE,
contrary to literature from pathological analysis of coronary
plagues [35]. We speculated this might be due to our study using
more stringent dual signs to determine high-risk plaques on
CCTA images, which might have missed the less severe cases
with high-risk plaques. In addition, the sign for “spotty cal-
cification” was noted in a large percentage of lesions in our
cohort, which might have affected the specificity of high-risk
plaque and thus might have reduced its chances as a predictor
of MACE.

Our study showing the CT-FFR ≤0.8 being an indepen-
dent predictive risk factor for MACE was consistent with the
published studies. Previous studies have shown the CT-FFR
parameter being more efficient than the anatomic stenosis
parameter for predicting MACE, and the CT-FFR ≤ 0.8 being
associated with a higher incidence of the primary endpoint
events, such as revascularization, acute myocardial infarction,
and death [36–38]. However, prior studies have also shown the
predictive power of CT-FFR being limited, and the accuracy of
its predictive model being decreased in some instances, espe-
cially when the CT-FFR value being borderline between 0.7 and
0.8 [39]. Therefore, it is advisable to conduct a thorough eval-
uation of all relevant clinical and imaging data, utilizing the
patients’ coronary arterial flow metrics to assess their risk of
MACE.

Literature has shown the prognostic impact of fat around
the coronary lesion plaque as represented by the FAI parameter
from CCTA [40]. However, there was no agreement in the liter-
ature on the selection of a specific location in the coronary arter-
ies for the measurement of FAI and for a cut-off value. We found
the mean FAI around the three main coronary arteries, rather
than the individual FAI value from each vessel, was the most
significant independent risk factor at the cut-off value −73.24.
In contrast, prior studies reported the LAD-FAI or the RCA-FAI
as the most significant independent risk factors [24, 41]. The
differences between our study and other’s data might be due
to the variations in study design, differences in CCTA imag-
ing protocols, our focus on patients with moderate to severe
stenosis, and the use of AI-assisted measurements of MACE.
Nevertheless, we speculated that the mean FAI around the three

main coronary arteries might reflect multiple vessels, rather
than a single vessel inflammation in the MACE group. Also,
there might be a better reflection of the overall coronary arterial
inflammatory status than the FAI value for an individual coro-
nary vessel.

Our study also showed that the model integrating all inde-
pendent predictors such as severe stenosis, CT-FFR ≤ 0.8, and
mean FAI had the most robust performance to predict MAC
as compared to the other models, which was consistent with
the literature [42]. This observation supports the notion of
using AI-assisted CCTA metrics in the comprehensive manage-
ment of patients with CAD. AI has been increasingly used in
cardiology [15, 43, 44]. Recent studies have emphasized the role
of AI-driven algorithms in improving the accuracy of functional
assessments in patients with CAD. Notably, AI could facilitate
the identification of hemodynamically significant lesions, a cru-
cial factor in managing patients with CAD [45, 46]. AI might also
play a role in the assessment of patients’ overall cardiac health
with both functional interpretation and anatomical depiction of
coronary vessels on the CCTA images [16, 47]. The AI approach
might help to delineate diagnostic pathways, optimize treat-
ment planning, and improve patient outcomes.

This study contributed novel data to CAD research through
an innovative AI approach. First, an integrated AI platform,
as indicated in this study, should allow for rapid and accu-
rate analysis of CCTA. This AI approach should help bridge
the gaps between community-level hospitals with limited skills
in imaging analysis and academic research-oriented hospitals
with high-level expertise in imaging analysis. Second, the mul-
tiparametric prediction model we identified in this study might
potentially improve the accuracy of predicting the occurrence
of MACE and assist in clinical decision making especially for
patients who did not have a clear-cut clinical indication for
intervention. Third, our study identified new independent risk
predictors of mean FAI values, which was a novel finding,
although it needs to be confirmed in a large sample with a
prospective study design.

There were several limitations to this study. First, there
were inherent limitations associated with the retrospective
design of this study. Various confounding variables could not
be controlled in this retrospective study such as patients’
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clinical demographic features, age, sex, comorbidities, treat-
ment strategies, and prognosis. In addition, CT scanner parame-
ters and imaging protocols could not be standardized in a retro-
spective design. Furthermore, it was a single-center study limit-
ing the generalizability of our study results. A future study with
a prospective design, multicenter approach, and a large sample
size may be helpful to control these variables and validate the
results from this study. Second, this study was also limited by
the potential for selection bias. For instance, patients with mild
coronary stenosis were not included in the study, which might
have affected the overall study results. In addition, this study
included a cohort with strict inclusion and exclusion criteria,
which might not reflect clinical practice. The varying clinical
follow-up time in this study was also an issue as some were up
to 10 years after the initial CCTA. The lack of a standardized
follow-up time might have affected the outcome assessment.
More studies with a sufficient sample size and statistical power
should be performed with the follow-up intervals being taken
into consideration such as dividing the cohort into an early
follow-up sub-cohort and a late follow-up sub-cohort. Third,
there were potential limitations for AI applications in CCTA
measurements. For instance, the accuracy of AI measurements
was largely dependent on high image quality. Issues such as
motion artifacts, imaging noise, suboptimal timing of contrast
enhancement, and variations in imaging protocols might affect
AI performance. In cases with poor image quality, the AI algo-
rithms might not be able to accurately identify and segment
the coronary arteries. Therefore, preprocessing measures were
performed to minimize the impact of image quality on the algo-
rithm’s performance. In addition, AI algorithms might have
inherent biases from various aspects, such as biased training
data, limited model architecture, and inconsistent parameter
settings. For instance, if the training data was biased, contain-
ing only patients of specific age groups or with one type of coro-
nary arterial stenosis, the algorithm might produce inaccurate
predictions when processing other types of coronary arterial
stenosis data. Lastly, AI algorithms were limited by inter-
pretability as they were not intuitively understandable. This
hindered the trust of the medical community and prevented
wider clinical application of AI. Therefore, when applying AI
to CCTA measurements, we incorporated methods to educate
the referring physicians and to improve interpretability, such
as using visual effects with charts and slide projections to
present the learning and decision-making processes of the algo-
rithm. Nevertheless, AI has advantages over manual assess-
ment as it is more efficient, more accurate, more repeatable,
and more adaptable for optimization and iteration of model
algorithms.

Conclusion
In this study, we identified independent risk factors and showed
robust performance of our predictive models for cardiac events
using AI-assisted CCTA metrics in patients with CAD. The
non-invasive imaging focused AI approach may potentially help
in clinical decision making and improve prognosis in patients
with symptomatic CAD.
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