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R E S E A R C H A R T I C L E

Development and validation of a preliminary
multivariable diagnostic model for identifying
unusual infections in hospitalized patients
Aysun Tekin 1∗ , Mohammad Joghataee 2, Lucrezia Rovati 3,4, Hong Hieu Truong 1, Claudia Castillo-Zambrano 3,
Kushagra Kushagra2, Nasrin Nikravangolsefid 1, Mahmut Ozkan 3, Ashish Gupta2, Vitaly Herasevich 5, Juan Domecq1,
John O’Horo 3,6, and Ognjen Gajic 3

Diagnostic delay leads to poor outcomes in infections, and it occurs more often when the causative agent is unusual. Delays are
attributable to failing to consider such diagnoses in a timely fashion. Using routinely collected electronic health record (EHR) data, we
built a preliminary multivariable diagnostic model for early identification of unusual fungal infections and tuberculosis in hospitalized
patients. We conducted a two-gate case-control study. Cases encompassed adult patients admitted to 19 Mayo Clinic enterprise
hospitals between January 2010 and March 2023 diagnosed with blastomycosis, cryptococcosis, histoplasmosis, mucormycosis,
pneumocystosis, or tuberculosis. Control groups were drawn from all admitted patients (random controls) and those with
community-acquired infections (ID-controls). Development and validation datasets were created using randomization for dividing
cases and controls (7:3), with a secondary validation using ID-controls. A logistic regression model was constructed using baseline and
laboratory variables, with the unusual infections of interest outcome. The derivation dataset comprised 1043 cases and 7000 random
controls, while the 451 cases were compared to 3000 random controls and 1990 ID-controls for validation. Within the derivation
dataset, the model achieved an area under the curve (AUC) of 0.88 (95% confidence interval [CI]: 0.87–0.89) with a good calibration
accuracy (Hosmer–Lemeshow P = 0.623). Comparable performance was observed in the primary (AUC = 0.88; 95% CI: 0.86–0.9) and
secondary validation datasets (AUC = 0.84; 95% CI: 0.82–0.86). In this multicenter study, an EHR-based preliminary diagnostic model
accurately identified five unusual fungal infections and tuberculosis in hospitalized patients. With further validation, this model could
help decrease the time to diagnosis.
Keywords: Atypical infections, diagnostic delay, diagnostic model, multivariable model, rare infections.

Introduction
Guideline-based therapy and order sets have been indispens-
able in streamlining the management of infectious diseases [1].
Nevertheless, these tools have primarily been designed to
address prevalent conditions. Less common pathogens not tar-
geted by empiric guideline-based treatment are more likely to
progress and need prompt diagnosis to optimize clinical care.
However, even in regions where these pathogens are endemic,
they are rarely prioritized in the differential diagnosis [2–4].

Numerous studies have highlighted notable delays in diag-
nosing patients with unusual pathogens [2, 3, 5, 6]. In our prior
assessment of pulmonary blastomycosis patients at a large mul-
tisite medical center, we observed a considerable diagnostic
delay, although 88% of the patients were diagnosed following
the first-performed fungal test [7]. Our findings indicate that

the main cause of the delay was the lack of timely considera-
tion of blastomycosis. Similarly, a survey exploring perceived
determinants of diagnostic delays in infections underscored the
lack of timely consideration and appropriate testing as major
contributors [8]. Despite advances in laboratory medicine’s
increasing diagnostic capacity [9], their effectiveness hinges on
the presumptive diagnosis of these entities in the appropriate
clinical context.

Unusual infections require meticulous attention to a broad
range of clinical variables. By employing an impartial approach,
diagnostic models have the potential to identify character-
istics often only recognized retrospectively as clues to an
unusual diagnosis. Electronic health records (EHRs) capture
an immense amount of real-time patient data, laying the
foundation for models that can formulate inferences based
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on analysis of large quantity of data. Our objective was to
develop and validate a preliminary diagnostic model using
EHR data from Mayo Clinic Enterprise Hospitals located across
the United States to identify patients hospitalized with spe-
cific unusual fungal infections (i.e., blastomycosis, cryptococ-
cosis, histoplasmosis, mucormycosis, and pneumocystosis) or
tuberculosis.

Materials and methods
We adhered to the transparent reporting for individual progno-
sis or diagnosis (TRIPOD) recommendations (Table S1) [10].

Study setting and participants
We employed a two-gate case-control design [11], in which
patients with and without the disease were selected based on
their disease status and tested, resulting in the score calculation
being performed on two separate source populations. Subjects
included adult patients admitted to Mayo Clinic enterprise hos-
pitals, spanning three academic medical centers located in Min-
nesota, Florida, and Arizona, along with 16 community hospitals
across Minnesota, Wisconsin, and Iowa. We excluded hospital-
izations lasting less than 24 h and patients who opted out of
participation in research.

Cases are defined as a group of unusual infections caused by
infectious agents that fulfill all three criteria: (1) have the poten-
tial to cause severe systemic infection, (2) are not detectable by
routine tests that are used for their typical associated infection
foci, and (3) do not respond to recommended first-line empirical
antimicrobials in terms of the drug or duration.

This analysis primarily focused on detecting blastomycosis,
cryptococcosis, histoplasmosis, mucormycosis, pneumocystis,
and tuberculosis. We exclusively screened diagnoses between
January 2010 and March 2023 to mitigate the influence of
diagnostic practice changes. To identify the cases, queries of
International Classification of Diseases (ICD) codes were exe-
cuted through the Mayo Data Explorer tool [12]. Afterward,
physician–researchers (CCZ, NN, MO, LR, AT, HT) reviewed
patient charts to confirm diagnoses.

The exclusion criteria included: lack of physician-confirmed
diagnosis, latent or inactive infections, repeated hospitaliza-
tions, no hospitalization, and admission after more than two
weeks of effective treatment.

We constructed two control datasets by screening patients
between June 2018 and November 2022. Patients diagnosed
with infections caused by pathogens that met our definition
of unusual infections (Table S2) were excluded to prevent the
inadvertent inclusion of cases in the control dataset. Given the
objective of identifying unusual infections across all hospital-
izations, the primary control dataset consisted of adult patients
admitted on an urgent or emergent basis (i.e., random controls).
We excluded the following hospitalizations from the control
datasets: acute trauma-related admission (determined by ICD
codes [13]), infection-related diagnoses leading to in-hospital
mortality without a confirmed causative agent, readmissions.

As a secondary control dataset, we intended to assem-
ble a dataset with admission characteristics comparable to

our cases. Therefore, we evaluated patients diagnosed with
community-acquired sepsis or septic shock, pneumonia, cen-
tral nervous system infections, endocarditis, or infectious peri-
carditis with confirmed pathogens (determined by ICD codes)
(i.e., ID-controls).

Control patients were randomly selected out of a large
patient dataset for data collection.

Outcomes
The outcome predicted by the model was the presence of
infections of interest, determined through ICD codes and con-
firmed via chart reviews by researchers blinded to the candidate
predictors.

Predictor variables
We selected candidate variables based on a priori knowledge
from a literature review of disease characteristics and expert
opinion (OG, JO). We restricted the data variables to those objec-
tively accessible through the EHR and available upon standard
assessment of patients admitted on an urgent or emergent basis.
Baseline variables were determined according to the status of
individuals at the time of admission, while dynamic variables
were limited to the initial 72 h of hospitalization. All variables
evaluated for inclusion in the model and their definitions are
outlined in Table S3. We conducted data collection in a blinded
manner with respect to case or control statuses via queries over
Mayo Data Explorer [12] and Intensive Care Unit Datamart [14]
tools.

Sample size
The number of variables to be tested was determined based
on the rule of at least ten outcome events per variable [15].
Consequently, 104 variables were set as the cap for the model
development phase, which included 1043 cases.

Ethical statement
This study protocol along with the variable groups to be col-
lected was reviewed and approved as a minimal risk study by
Mayo Clinic Institutional Review Board (22-009881, approval
date: 11/8/2022) under Common Rule 45 CFR 46.116. The
requirement for written informed consent was waived.

Statistical analysis
We described continuous data using the median and interquar-
tile range (IQR), while presenting the categorical data as
frequencies and percentages. Differences among case and con-
trol groups, as well as derivation and validation datasets,
were evaluated via univariable analyses using chi-square and
Mann–Whitney U tests. We randomly divided the dataset
containing cases and random controls into derivation and
validation subsets using a 7:3 ratio. To ensure a comparable dis-
tribution of individual unusual cases in both datasets, we strat-
ified the 7:3 ratio application by the case type. We evaluated the
missingness levels in the entire dataset before partitioning and
excluded variables with over 35% missing values. We imputed
the remaining variables via multivariate normal imputation,
with a shrinkage estimator for covariances, creating a complete
dataset.
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Figure 1. Flowchart for the identification of the patients in derivation and validation datasets. ICD: International Classification of Diseases; ID-controls:
The control group that consisted of patients with community-acquired infectious diseases other than unusual infections.

To determine the linearity of patterns, we investigated the
relationship between candidate predictors and the outcome
using a Lowess smoothing approach. A multivariable binary
logistic regression model was set, with the outcome repre-
senting either a case or control. Variables indicating the same
domains were excluded from the model based on their rela-
tive importance. We employed a backward elimination variable
selection method, guided by the Akaike information criterion.
We examined the collinearity among included variables using
variance inflation factors (VIFs). After evaluating all input, the
final model was built. We assessed the calibration using the
Hosmer–Lemeshow goodness of fit test [16]. Model performance
was assessed using C-statistics by receiver operating charac-
teristic curve plotting and area under the curve (AUC) calcu-
lation with corresponding 95% confidence intervals (CIs). We
calculated the predicted probability using estimates from the
derivation model to be used in the validation tests. The primary
validation compared the validation cases with random controls,
while the secondary validation compared the same cases with
ID-controls. Sensitivity, specificity, and likelihood ratios were
calculated for varying threshold points across all three datasets.
To determine the predictive values, we calculated the disease
prevalence among cases admitted after June 2018 and control
admissions, excluding readmissions.

We performed several additional analyses tests on the pri-
mary validation dataset including sensitivity analyses (treat-
ing missing variables as normal by substituting missing values
with the average normal, full-case analysis, excluding imputed
values, and excluding cases admitted before June 2018) and
subgroup analysis (separate evaluations for each unusual infec-
tion category).

The logistic regression model was built and tested using JMP
Pro 14.1.0 (SAS Institute Inc., Cary, NC, USA, 1989–2021) and
IBM SPSS v27.0 (Statistical Package for Social Sciences, USA)
software. The comparison of receiver operating characteristic
curves was conducted via DeLong’s test [17] using MedCalc
Statistical Software. All tests were two-sided with a statistical
significance of P ≤ 0.05.

Results
We evaluated 2532 patients with assigned ICD codes for one of
the unusual infections of interest and confirmed 1494 during
structured chart reviews (Figure S1). Ten thousand random
controls and 1990 ID-controls were randomly selected from hos-
pitalizations meeting inclusion criteria (Figure 1). For deriva-
tion, 1043 cases were compared to 7000 random controls, while
451 cases were compared to 3000 random controls for primary
validation. The same 451 cases from the validation dataset were
compared to 1990 ID-controls for secondary validation.

Model development
Table 1 presents the distribution of all variables assessed for
the model in the derivation dataset, while Table 2 displays
both validation datasets. The development and primary valida-
tion datasets were largely balanced. The ID-validation dataset
exhibited distinct characteristics compared to the derivation
dataset. Table S4 presents variable distribution across different
datasets.

Stepwise variable evaluation for the model is shown in
Table S3. The included variables’ multicollinearity was evalu-
ated by VIF, all of which were less than 10. The final model,
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Table 1. Baseline characteristics for derivation dataset (before imputation)

Variables Total (N = 8043) Cases (n = 1043) Controls (n = 7000) P value

Age, years, median (IQR) 65 (49, 76) 61 (48, 71) 65 (50, 77) <0.001

Sex, no. (%) <0.001

Female 3899 (48.5) 378 (36.4) 3521 (50.3)
Male 4136 (51.5) 660 (63.6) 3476 (49.7)

Race, no. (%) <0.001

African American 391 (4.9) 67 (6.4) 324 (4.6)
Asian 154 (1.9) 42 (4) 112 (1.6)
White 7136 (88.8) 868 (83.3) 6268 (89.6)
Others 355 (4.4) 65 (6.2) 290 (4.1)

Ethnicity, no. (%) <0.001

Hispanic or Latino 372 (4.6) 40 (3.8) 332 (4.7)
Not Hispanic or Latino 7456 (92.8) 945 (90.7) 6511 (93.1)
Others, unknown, or not applicable 207 (2.6) 57 (5.5) 150 (2.1)

Quarter of admission, no. (%) <0.001

January–March 1723 (21.4) 276 (26.5) 1447 (20.7)
April–June 1750 (21.8) 232 (22.2) 1518 (21.7)
July–September 2297 (28.6) 261 (25) 2036 (29.1)
October–December 2273 (28.3) 274 (26.3) 1999 (28.6)

Admission location, no. (%) <0.001

Arizona 1406 (17.5) 182 (17.4) 1224 (17.5)
Florida 1226 (15.2) 151 (14.5) 1075 (15.4)
MCHS 2482 (30.9) 132 (12.7) 2350 (33.6)
Rochester 2929 (36.4) 578 (55.4) 2351 (33.6)

Admission source, no. (%) <0.001

Another hospital or care facility 1802 (22.4) 246 (23.6) 1556 (22.2)
Outpatient or emergency department 930 (11.6) 350 (33.6) 580 (8.3)
Others or unknown 5311 (66) 447 (42.9) 4864 (69.5)
Pre-hospital location home 5898 (73.3) 857 (82.2) 5041 (72) <0.001
Transferred patient 1182 (20.3) 74 (30.2) 1108 (19.9) <0.001

Country of residence, no. (%) <0.001

United States or Canada 7990 (99.4) 1023 (98.2) 6967 (99.6)
Others 49 (0.6) 19 (1.8) 30 (0.4)
∗African Region 1 (2) 1 (5.3) 0
∗ Eastern Mediterranean Region 29 (59.2) 10 (52.6) 19 (63.3)
∗ Region of the Americas, other than the US and Canada 16 (32.7) 6 (31.6) 10 (33.3)
∗ South-East Asian Region 2 (4.1) 2 (10.5) 0
∗ Western Pacific Region 1 (2) 0 1 (3.3)

RUCA codes, no. (%) <0.001

Metropolitan area 5212 (64.9) 591 (56.8) 4621 (66.1)
Micropolitan area 1100 (13.7) 171 (16.4) 929 (13.3)
Small town 898 (11.2) 111 (10.7) 787 (11.3)
Rural areas 783 (9.7) 152 (14.6) 631 (9)
Not coded 38 (0.5) 16 (1.5) 22 (0.3)

Body mass index, kg/m2, median (IQR) 27.7 (23.7, 32.7) 26.3 (22.9, 31.2) 27.9 (23.8) <0.001

Smoking, no. (%) <0.001

Active smoker 3173 (39.5) 331 (31.7) 2842 (40.6)
Never or ex-smoker 4870 (60.5) 712 (68.3) 4158 (59.4)

Alcohol use disorder, no (%) 1016 (12.8) 87 (8.3) 929 (13.3) <0.001

Comorbidities, no. (%)

AIDS 116 (1.4) 64 (6.1) 52 (0.7) <0.001
Asthma 2013 (25) 167 (16) 1846 (26.4) <0.001

(Continued)

Tekin et al.
Unusual infections in hospitalized patients 4 www.biomolbiomed.com

http://www.biomolbiomed.com
http://www.biomolbiomed.com


Table 1. Continued

Variables Total (N = 8043) Cases (n = 1043) Controls (n = 7000) P value

Cancer 2939 (36.5) 522 (50.1) 2417 (34.5) <0.001
Cardiovascular disorders 2022 (25.1) 180 (17.3) 1842 (26.3) <0.001
Chronic heart failure 2119 (26.3) 235 (22.5) 1884 (26.9) 0.003
Chronic kidney diseases 2440 (30.3) 305 (29.2) 2135 (30.5) 0.410
Chronic obstructive pulmonary disease 1668 (20.7) 212 (20.3) 1456 (20.8) 0.736
Connective tissue disease 514 (6.4) 63 (6) 451 (6.4) 0.625
Dementia 872 (10.8) 88 (8.4) 784 (11.2) 0.007
Diabetes 3229 (40.2) 416 (39.9) 2813 (40.2) 0.872
Dialysis 448 (5.6) 72 (6.9) 376 (5.4) 0.044
Hypertension 5314 (66.1) 591 (56.7) 4723 (67.5) <0.001
Immunodeficiency 773 (9.6) 236 (22.6) 537 (7.7) <0.001
Interstitial lung disease 2296 (28.6) 396 (38) 1900 (27.1) <0.001
Leukemia 316 (3.9) 145 (13.9) 171 (2.4) <0.001
Liver failure 2202 (27.4) 247 (23.7) 1955 (27.9) 0.004
Lymphoma 405 (5) 190 (18.2) 215 (3.1) <0.001
Myocardial infarction 1447 (18) 120 (11.5) 1327 (19) <0.001
Peptic ulcer disease 771 (9.6) 93 (8.9) 678 (9.7) 0.431
Peripheral vascular disease 2480 (30.8) 250 (24) 2230 (31.9) <0.001
Valvular dysfunction 2595 (32.3) 315 (30.2) 2280 (32.6) 0.127

Laboratory variables at the time of admission, median (IQR)

Hemoglobin, gr/dL 12.2 (10.2, 13.7) 10.4 (8.8, 12.2) 12.4 (10.5, 13.9) <0.001
Hematocrit, % 37.5 (32.2, 41.7) 32.1 (27.5, 37.2) 38.1 (33.2, 42.1) <0.001
Platelets, ×10(9)/L

Highest 226 (169, 289) 186 (108, 279) 229 (175, 290) <0.001
Lowest 222 (166, 285) 181 (102, 273) 226 (173, 286) <0.001

Leukocytes, ×10(9)/L
Highest 8.9 (6.5, 12.2) 7.6 (4.5, 11.9) 9 (6.7, 12.3) <0.001
Lowest 8.7 (6.3, 11.8) 7.4 (4.3, 11.6) 8.8 (6.5, 11.9) <0.001

Lymphocytes, ×10(9)/L
Highest 1.18 (0.71, 1.79) 0.7 (0.4, 1.33) 1.24 (0.77, 1.83) <0.001
Lowest 1.16 (0.69, 1.76) 0.69 (0.38, 1.32) 1.21 (0.75, 1.8) <0.001

Neutrophils, ×10(9)/L
Highest 6.29 (4.2, 9.6) 5.49 (2.91, 9.28) 6.38 (4.37, 9.65) <0.001
Lowest 6.15 (4.11, 9.3) 5.16 (2.56, 8.87) 6.26 (4.28, 9.38) <0.001

Monocytes, ×10(9)/L
Highest 0.67 (0.46, 0.93) 0.54 (0.27, 0.84) 0.68 (0.48, 0.94) <0.001
Lowest 0.65 (0.45, 0.91) 0.51 (0.26, 0.82) 0.66 (0.47, 0.92) <0.001

Eosinophil, ×10(9)/L
Highest 0.07 (0.01, 0.17) 0.03 (0, 0.11) 0.08 (0.02, 0.17) <0.001
Lowest 0.07 (0.01, 0.16) 0.03 (0, 0.11) 0.07 (0.01, 0.17) <0.001

Glucose, mg/dL
Highest 123 (104, 162) 122 (102, 164) 123 (105, 162) 0.372
Lowest 123 (104, 161) 120 (101, 156) 123 (105, 162) 0.002

Lactate, mmol/L 1.6 (1.12, 2.4) 1.68 (1.2, 2.5) 1.6 (1.1, 2.4) 0.033
Creatinine, mg/dL 0.96 (0.77, 1.31) 0.92 (0.73, 1.30) 0.96 (0.77, 1.31) 0.161
Blood urea nitrogen, mg/dL 18 (13, 27) 19 (13, 28.1) 18 (12.9, 27) 0.046
Potassium, mmol/L

Highest 4.2 (3.8, 4.5) 4.2 (3.8, 4.5) 4.1 (3.8, 4.5) 0.790
Lowest 4.1 (3.8, 4.4) 4.1 (3.7, 4.4) 4.1 (3.8, 4.4) 0.550

Sodium, mmol/L
Highest 138 (135, 140) 136 (133, 139) 138 (135, 140) <0.001
Lowest 137 (134, 140) 136 (133, 139) 138 (135, 140) <0.001

Calcium, mmol/L
Highest 9.1 (8.7, 9.5) 8.8 (8.3, 9.3) 9.2 (8.7, 9.5) <0.001
Lowest 9.1 (8.6, 9.5) 8.8 (8.2, 9.3) 9.1 (8.7, 9.5) <0.001

Bicarbonate, mmol/L 24 (22, 26) 24 (21, 26) 24 (22, 26) 0.011

(Continued)
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Table 1. Continued

Variables Total (N = 8043) Cases (n = 1043) Controls (n = 7000) P value

Chloride, mmol/L
Highest 101 (98, 104) 100 (97, 103) 101 (98, 104) <0.001
Lowest 101 (97, 103) 100 (96, 103) 101 (97, 104) <0.001

AST, U/L 28 (21, 46) 33 (22, 51) 28 (20, 45) <0.001
ALT, U/L 23 (15, 41) 29 (18, 51) 22 (15, 39) <0.001
ALP, U/L 90 (69, 128) 93 (69, 144) 89 (69, 125) 0.016
Total bilirubin, mg/dL 0.5 (0.3, 0.9) 0.5 (0.4, 0.9) 0.5 (0.3, 0.9) 0.399
Albumin, g/dL 3.7 (3.3, 4.1) 3.2 (2.8, 3.7) 3.8 (3.3, 4.2) <0.001

Bold indicates statistical significance. ∗Among those who reside outside of the United States or Canada. AIDS: Acquired immunodeficiency syndrome; ALP:
Alkaline phosphatase; ALT: Alanine transaminase; AST: Aspartate aminotransferase; g/dL: Grams per deciliter; IQR: Interquartile range; MCHS: Mayo Clinic
Health System; mg/dL: Milligrams per deciliter; mmol/L: Millimoles per liter; RUCA: Rural–urban commuting area; U/L: Units per liter.
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Figure 2. Receiver operating characteristic curves for the model for detection of patients with unusual fungal infections and tuberculosis in
derivation and validation cohorts. (A) Model performance in the derivation dataset; the AUC was 0.88 (95% CI: 0.87–0.89); (B) Model performance in
the primary validation dataset, compared to random controls; the AUC was 0.88 (95% CI: 0.86–0.9); (C) Model performance in the secondary validation
dataset, compared to patients with infections; the AUC was 0.84 (95% CI: 0.82–0.86). AUC: Area under the receiver operating characteristic curve.

including 37 variables, has been reported in Table 3. The model
calibration was good, with a Hosmer–Lemeshow P value of
0.623.

Model performance
The model distinguished cases from controls in the derivation
dataset with an AUC of 0.88 (95% CI: 0.87–0.89) (Figure 2A).
It performed similarly in the primary and secondary validation
datasets (AUC = 0.88; 95% CI: 0.86–0.9 and AUC = 0.84; 95% CI:
0.82–0.86, respectively) (Figure 2B and 2C). To determine the
predictive values, we calculated the disease prevalence among
cases admitted after June 2018 (n = 601) and control admissions
(n = 288, 334). Accordingly, assuming a prevalence of 0.21%, the
positive predictive value in the validation dataset for a cutoff
of 0.13 would be 0.012 (95% CI: 0.011–0.013) with a negative
predictive value of 0.999 (95% CI: 0.999–0.999). Model perfor-
mance for different cutoff values is provided in Table S5.

Subgroup and sensitivity analyses
In subgroup analyses evaluating model performance for
individual diseases, the highest performance was observed
among mucormycosis patients (AUC = 0.93; 95% CI: 0.9–0.96),
whereas the lowest performance was observed for blastomy-
cosis patients (AUC = 0.82; 95% CI: 0.72–0.92). Accordingly,

the model performance for detecting mucormycosis was
significantly higher than all other unusual infections except for
histoplasmosis. Figure 3 depicts the results for all subgroups.

In sensitivity analyses considering all the missing variables
as normal, the model’s discriminatory performance remained
excellent with an AUC of 0.86 (95% CI: 0.85–0.88). Similarly,
when the model was executed using a full-case approach, the
AUC was 0.84 (95% CI: 0.78–0.89) (Figure S2A and S2B). Lastly,
after excluding cases admitted before June 2018 (186 cases vs
3000 controls), the model discriminated the cases from controls
with an AUC of 0.85 (95% CI: 0.83–0.88) (Figure S2C).

Discussion
In this large multicenter retrospective study, we developed
and validated a preliminary diagnostic model that distin-
guishes patients with five unusual fungal infections (i.e., blas-
tomycosis, cryptococcosis, histoplasmosis, mucormycosis, and
pneumocystosis) or tuberculosis from other hospitalizations
with excellent performance. Our model relies on baseline
variables and standard laboratory tests available in the EHR
within the first three days of hospitalization without includ-
ing any sophisticated microbiological or radiological evalu-
ations. It consistently demonstrated strong performance in
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Table 2. Baseline characteristics for validation dataset (before imputation)

Variables Cases (n = 451)
Random controls

(n = 3000) P value∗
ID-controls
(n = 1990) P value**

Age, years, median (IQR) 62 (49, 71) 65 (48, 76) <0.001 76 (66, 85) <0.001

Sex, no. (%) <0.001 <0.001

Female 168 (37.4) 1527 (50.9) 942 (47.3)
Male 281 (62.6) 1472 (49.1) 1048 (52.7)

Race, no. (%) 0.010 <0.001

African American 31 (6.9) 122 (4.1) 21 (1.1)
Asian 19 (4.2) 79 (2.6) 7 (0.4)
White 379 (84) 2655 (88.5) 1920 (96.5)
Others 22 (4.9) 144 (4.8) 42 (2.1)

Ethnicity, no. (%) 0.557 <0.001

Hispanic or Latino 21 (4.7) 151 (5) 22 (1.1)
Not Hispanic or Latino 416 (92.2) 2778 (92.7) 1936 (97.3)
Others, unknown, or not applicable 14 (3.1) 69 (2.3) 32 (1.6)

Quarter of admission, no. (%) <0.001 <0.001

January–March 127 (28.2) 604 (20.1) 439 (22.1)
April–June 100 (22.2) 677 (22.6) 703 (35.3)
July–September 111 (24.6) 852 (28.4) 471 (23.7)
October–December 113 (25.1) 867 (28.9) 377 (18.9)

Admission location, no. (%) <0.001 <0.001

Arizona 76 (16.9) 526 (17.5) 115 (5.8)
Florida 75 (16.6) 417 (13.9) 60 (3)
MCHS 46 (10.2) 1086 (36.2) 619 (31.1)
Rochester 254 (56.3) 971 (32.4) 1196 (60.1)

Admission source, no. (%) <0.001 <0.001

Another hospital or care facility 122 (27.1) 665 (22.2) 482 (24.2)
Outpatient or emergency department 148 (32.8) 241 (8) 171 (8.6)
Others or unknown 181 (40.1) 2094 (69.8) 1337 (67.2)
Pre-hospital location home 364 (80.7) 2137 (71.2) 1253 (63)
Transferred patient 31 (6.9) 528 (21.8) <0.001 253 (12.7) <0.001

Country of residence, no. (%) 0.142 0.014

United States or Canada 445 (98.9) 2984 (99.5) 1986 (99.8)
Others 5 (1.1) 16 (0.5) 4 (0.2)
∗∗∗African Region 0 1 (6.3) 0
∗∗∗ Eastern Mediterranean Region 5 (100) 7 (43.8) 4 (100)
∗∗∗ Region of the Americas, other than the US and Canada 0 7 (43.8) 0
∗∗∗ South-East Asian Region 0 1 (6.3) 0

RUCA codes, no. (%) 0.001 <0.001

Metropolitan area 264 (58.8) 1974 (65.9) 1250 (62.8)
Micropolitan area 64 (14.3) 411 (13.7) 346 (17.4)
Small town 58 (12.9) 340 (11.3) 208 (10.5)
Rural areas 58 (12.9) 259 (8.6) 182 (9.1)
Not coded 5 (1.1) 12 (0.4) 3 (0.2)

Body mass index, kg/m2, median (IQR) 26 (22.8, 30.1) 28.1 (24.2, 33.1) <0.001 28.1 (23.9, 33.3) <0.001

Smoking, no. (%) <0.001 0.097

Active smoker 146 (32.4) 1233 (41.1) 566 (28.4)
Never or ex-smoker 305 (67.6) 1767 (58.9) 1424 (71.6)

Alcohol use disorder 38 (8.4) 391 (13.0) <0.001 290 (14.6) <0.001

Comorbidities, no. (%)

AIDS 31 (6.9) 24 (0.8) <0.001 33 (1.7) <0.001
Asthma 78 (17.3) 783 (26.1) <0.001 758 (38.1) <0.001

(Continued)
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Table 2. Continued

Variables Cases (n = 451)
Random controls

(n = 3000) P value∗
ID-controls
(n = 1990) P value**

Cancer 217 (48.2) 969 (32.3) <0.001 1012 (50.9) 0.294
Cardiovascular disorders 83 (18.4) 802 (26.7) <0.001 856 (43) <0.001
Chronic heart failure 96 (21.3) 793 (26.4) 0.003 914 (45.9 <0.001
Chronic kidney diseases 149 (33) 908 (30.3) 0.234 1009 (50.7) <0.001
Chronic obstructive pulmonary disease 93 (20.7) 620 (20.7) 1.00 766 (38.5) <0.001
Connective tissue disease 31 (6.9) 180 (6) 0.463 241 (12.1) <0.001
Dementia 28 (6.2) 344 (11.5) <0.001 545 (27.4) <0.001
Diabetes 181 (40.2) 1196 (39.9) 0.886 1236 (62.1) <0.001
Dialysis 36 (8) 152 (5.1) 0.011 94 (4.7) 0.005
Hypertension 266 (59.1) 1975 (65.8) 0.005 1708 (85.9) <0.001
Immunodeficiency 105 (23.3) 224 (7.5) <0.001 160 (8) <0.001
Interstitial lung disease 160 (35.6) 825 (27.5) <0.001 1048 (52.7) <0.001
Leukemia 68 (15.1) 78 (2.6) <0.001 64 (3.2) <0.001
Liver failure 105 (23.3) 838 (27.9) 0.041 217 (10.9) <0.001
Lymphoma 72 (16) 97 (3.2) <0.001 93 (4.7) <0.001
Myocardial infarction 66 (14.7) 560 (18.7) 0.040 565 (28.4) <0.001
Peptic ulcer disease 49 (10.9) 288 (9.6) 0.399 398 (20) <0.001
Peripheral vascular disease 112 (24.9) 929 (31) 0.009 1225 (61.6) <0.001
Valvular dysfunction 140 (31) 946 (31.5) 0.834 991 (49.8) <0.001

Laboratory variables at the time of admission, median (IQR)

Hemoglobin, g/dL 10.4 (9, 12) 12.5 (10.7, 13.9) <0.001 11.7 (10.1, 13.1) <0.001
Hematocrit, % 32.2 (28.2, 36.9) 38.2 (33.6, 42.3) <0.001 36.5 (32.2, 40.4) <0.001
Platelets, ×10(9)/L

Highest 180 (104, 260) 229 (178, 290) <0.001 206 (155, 274) <0.001
Lowest 176 (94, 254) 227 (174, 286) <0.001 202 (150, 269) <0.001

Leukocytes, ×10(9)/L
Highest 7.7 (4.3, 11.5) 8.9 (6.7, 12.2) <0.001 11.8 (8.1, 16.4) <0.001
Lowest 7.4 (4.1, 11.1) 8.8 (6.6, 11.8) <0.001 11.4 (7.8, 15.9) <0.001

Lymphocytes, ×10(9)/L
Highest 0.76 (0.42, 1.3) 1.25 (0.8, 1.83) <0.001 0.94 (0.59, 1.39) <0.001
Lowest 0.74 (0.4, 1.28) 1.22 (0.78, 1.8) <0.001 0.91 (0.57, 1.36) <0.001

Neutrophils, ×10(9)/L
Highest 5.36 (2.83, 9.03) 6.32 (4.32, 9.42) <0.001 9.47 (6.02, 13.94) <0.001
Lowest 5.2 (2.69, 8.82) 6.2 (4.27, 9.22) <0.001 8.82 (5.41, 13.15) <0.001

Monocytes, ×10(9)/L
Highest 0.48 (0.26, 0.78) 0.68 (0.49, 0.94) <0.001 0.8 (0.51, 1.17) <0.001
Lowest 0.46 (0.24, 0.74) 0.66 (0.48, 0.93) <0.001 0.78 (0.48, 1.14) <0.001

Eosinophil, ×10(9)/L
Highest 0.03 (0, 0.12) 0.08 (0.02, 0.18) <0.001 0.03 (0, 0.1) 0.003
Lowest 0.03 (0, 0.11) 0.08 (0.02, 0.17) <0.001 0.02 (0, 0.09) 0.006

Glucose, mg/dL
Highest 124 (103, 174) 123 (104, 161) 0.620 141 (115, 188) <0.001
Lowest 119 (100, 163) 123 (104, 161) 0.060 141 (115, 188) <0.001

Lactate, mmol/L 1.6 (1.18, 2.6) 1.6 (1.1, 2.4) 0.428 1.9 (1.3, 2.9) <0.001
Creatinine, mg/dL 1 (0.78, 1.4) 0.95 (0.76, 1.26) 0.249 1.15 (0.86, 1.62) <0.001
Blood urea nitrogen, mg/dL 20 (13, 31) 17.9 (12, 26) <0.001 23 (16, 33) <0.001
Potassium, mmol/L

Highest 4.2 (3.8, 4.5) 4.1 (3.8, 4.5) 0.791 4.2 (3.8, 4.6) 0.150
Lowest 4.1 (3.7, 4.4) 4.1 (3.7, 4.4) 0.184 4.1 (3.7, 4.4) 0.545

Sodium, mmol/L
Highest 136 (133, 139) 138 (135, 140) <0.001 137 (134, 140) 0.002
Lowest 136 (132, 139) 138 (135, 140) <0.001 136 (133, 139) 0.032

Calcium, mmol/L
Highest 8.8 (8.3, 9.3) 9.2 (8.8, 9.5) <0.001 9 (8.6, 9.4) 0.002
Lowest 8.7 (8.2, 9.2) 9.1 (8.7, 9.5) <0.001 8.9 (8.4, 9.3) 0.032

Bicarbonate, mmol/L 23 (21, 26) 24 (22, 26) 0.013 23 (21, 26) 0.880

(Continued)
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Table 2. Continued

Variables Cases (n = 451)
Random controls

(n = 3000) P value∗
ID-controls
(n = 1990) P value**

Chloride, mmol/L
Highest 100 (97, 103) 101 (98, 104) <0.001 99 (96, 103) 0.068
Lowest 99 (96, 102) 101 (97, 104) <0.001 99 (95, 102) 0.052

AST, U/L 35 (22, 60) 27 (20, 43) <0.001 29 (22, 48) 0.021
ALT, U/L 27 (17, 53) 23 (15, 38) <0.001 23 (15, 38) <0.001
ALP, U/L 99 (73, 155) 88 (68, 118) <0.001 96 (74, 142) 0.525
Total bilirubin, mg/dL 0.5 (0.4, 0.9) 0.5 (0.3, 0.9) 0.262 0.7 (0.4, 1.1) <0.001
Albumin, g/dL 3.2 (2.9, 3.6) 3.8 (3.4, 4.2) <0.001 3.5 (3.1, 3.9) <0.001

Bold indicates statistical significance. ∗Cases vs controls, ∗∗Cases vs ID-controls, ∗∗∗Among those who reside outside of the United States or Canada,
∗∗∗∗Outside of the United States or unknown. AIDS: Acquired immunodeficiency syndrome; ALP: Alkaline phosphatase; ALT: Alanine transaminase;
AST: Aspartate aminotransferase; CHF: Chronic heart failure; g/dL: Grams per deciliter; ID-controls: The control group that consisted of patients with
community-acquired infectious diseases other than unusual infections; IQR: Interquartile range; MCHS: Mayo Clinic Health System; mg/dL: Milligrams per
deciliter; mmol/L: Millimoles per liter; RUCA: Rural–urban commuting area; U/L: Units per liter.
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Figure 3. Receiver operating characteristic curves for the model for
detection of patients with specific unusual infections. Model performance
in detecting patients with blastomycosis vs random controls: AUC = 0.82
(95% CI: 0.72–0.92); Cryptococcosis vs random controls: AUC = 0.83
(95% CI: 0.78–0.88); Histoplasmosis vs random controls: AUC = 0.89
(95% CI: 0.85–0.94); Mucormycosis vs random controls: AUC = 0.93
(95% CI: 0.9–0.96); Pneumocystis vs random controls: AUC = 0.89 (95%
CI: 0.87–0.91); Tuberculosis vs random controls: AUC = 0.86 (95% CI:
0.81–0.92). AUC: Area under the receiver operating characteristic curve.

two separate validation sets, distinguishing cases from all
hospitalizations and specifically from those admitted with other
community-acquired infections. With further validation, both
externally and prospectively, this model has the potential to
become a supplementary tool to indicate patients who would
benefit from additional microbiological evaluation or consulta-
tion with infectious disease specialists.

Advanced diagnostic tools are available for most pathogens
included in this study [18–20], but their effectiveness relies on
clinical suspicion. This poses a challenge due to the nonspecific

presentation of these conditions [7, 8]. Accurate diagnosis
requires timely recognition of complex patterns, which can be
detected via a mathematical model. Many diagnostic and prog-
nostic algorithms are more prominent in research settings than
practical applications [21, 22]. This is partly because common
conditions seldom necessitate advanced analytics. Conditions
that tend to go unnoticed, however, such as unusual infections,
are more appropriate targets because they require paying atten-
tion to many variables. Thus, diagnostic models may accelerate
the diagnosis for unusual infections. Currently, no tools are
available to aid medical teams in proactively considering these
infections.

According to our model, the likelihood of infections of
interest decreased with advancing age and among females.
This is in line with the reported increased susceptibility of
middle-aged males to some of these infections [23, 24]. Fur-
thermore, Asian and Black or African American individu-
als exhibited an increased risk, consistent with surveillance
studies [25, 26]. Rural living conditions are another established
risk factor for unusual infections [27]. We evaluated this asso-
ciation using Rural–Urban Commuting Area codes classifica-
tion in a simplified manner [28] and showed that inhabiting
metropolitan areas displayed a lower probability of unusual
infections than rural ones. Certain comorbidities like hyper-
tension and chronic heart failure were linked to a reduced
unusual infection risk, while conditions like diabetes, immun-
odeficiency, and pulmonary comorbidities, which are known
risk factors, were associated with a higher probability [29–31].
For laboratory variables likely to be measured multiple times
a day and those with potential clinical significance at both
extremes, the highest and lowest recorded levels were evalu-
ated. Notably, lower sodium levels were significantly associated
with an increased risk of unusual infections, consistent with the
well-established association between hyponatremia and granu-
lomatous diseases [32–35].

This study employed a two-gate case-control approach, suit-
able for low-prevalence diseases but limited in terms of appli-
cability of specificity to routine care [11]. To mitigate the study
design’s impact, we utilized two distinct validation controls,
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Table 3. Multivariate diagnostic model for unusual fungal infections and tuberculosis in the derivation dataset

Variable Estimate 95% CI P value

Intercept 13.69 10.93, 16.45 <0.001

Quarter of admission, reference:
October–December

January–March 0.24 0.1, 0.38 <0.001
April–June 0.08 −0.07, 0.22 0.304
July–September −0.19 −0.32, −0.05 <0.001

Admission location, reference: Mayo
Clinic Health System Hospitals

Rochester 0.35 0.22, 0.48 <0.001
Florida 0.09 −0.09, 0.26 0.338
Arizona 0.31 0.14, 0.48 <0.001
Non-transferred patient −0.32 −0.44, −0.19 <0.001
Age −0.02 −0.02, −0.01 <0.001
Female sex −0.29 −0.38, −0.21 <0.001

Race, reference: White Others −0.36 −0.65, −0.07 0.014
Asian 0.65 0.3, 0.99 <0.001
Black or African American 0.1 −0.18, 0.38 0.469

RUCA codes, reference: Rural areas Not coded 0.27 −0.38, 0.92 0.414
Metropolitan −0.39 −0.59, −0.18 <0.001
Micropolitan 0.003 −0.24, 0.24 0.981
Small town −0.26 −0.52, 0.004 0.054
Never or ex-smoker 0.21 0.11, 0.3 <0.001
No alcohol use disorder 0.13 −0.03, 0.29 0.100

Admission source, reference: Another
hospital or care facility

Others or unknown −0.48 −0.6, −0.36 <0.001
Outpatient or emergency department 1.08 0.94, 1.22 <0.001

Comorbidities, reference: Having the
specific disease

No myocardial infarction 0.16 0.03, 0.29 0.016
No chronic heart failure 0.08 −0.03, 0.19 0.130
No peripheral vascular diseases 0.26 0.15, 0.37 <0.001
No chronic obstructive pulmonary disease −0.33 −0.47, −0.2 <0.001
No interstitial lung disease −0.44 −0.54, −0.34 <0.001
No asthma 0.31 0.18, 0.43 <0.001
No connective tissue disease 0.13 −0.04, 0.3 0.136
No diabetes −0.16 −0.26, −0.06 0.002
No liver failure 0.26 0.15, 0.37 <0.001
No cancer 0.14 0.04, 0.24 <0.001
No leukemia −0.52 −0.69, −0.36 <0.001
No lymphoma −0.66 −0.81, −0.52 <0.001
No AIDS −0.91 −1.15, −0.67 <0.001
No hypertension 0.12 0.02, 0.22 0.023
No immunodeficiency −0.45 −0.56, −0.33 <0.001

Laboratory variables at the time of
admission

Glucose, lowest 0.002 −0.003, 0.0005 <0.001
Creatinine −0.15 −0.22, −0.09 <0.001
Potassium, lowest 0.15 0, 0.31 0.056
Sodium, highest −0.03 −0.06, 0.0005 0.046
Chloride, lowest −0.02 −0.05, −0.0004 0.046
ALP −0.0009 −0.002, −0.0003 0.007
Albumin −1.01 −1.16, −0.85 <0.001
Hematocrit −0.04 −0.05, −0.03 <0.001
Platelets, lowest −0.001 −0.002, −0.0003 <0.001
Leukocytes, lowest 0.01 −0.001, 0.02 0.093
Monocytes, highest −0.55 −0.79, −0.32 <0.001
Eosinophil, highest −0.33 −0.8, 0.13 0.161

Bold indicates statistical significance. AIDS: Acquired immunodeficiency syndrome; ALP: Alkaline phosphatase; CI: Confidence interval; RUCA: Rural–urban
commuting area.

i.e., random controls and individuals with community-acquired
infections. Due to the extremely low prevalence of the
infections of interest, the positive predictive values were
low. Still, the model had acceptable accuracy across all three
datasets, with high negative predictive values. The study results
are promising in achieving high sensitivity, prompting plans

for further validation through a prospective cohort study. The
model’s complexity and reliance on estimates, rather than
simplified calculations, pose challenges for bedside calculation.
Instead, we envisioned this model as a readily calculated score
within the EHR or alternative data visualization tools. To
achieve this, we intend to leverage the existing control tower
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structure for Mayo Clinic enterprise hospitals [36]. This system
will flag patients with high sensitivity. Given the low prevalence
of the diseases and the control tower structure’s demonstrated
efficiency in improving screening processes [37, 38], the
expected workload will be manageable for one dedicated person
to screen all flagged patients across the Mayo Clinic enterprise,
even with low specificity. The specificity of the model will
be gradually enhanced by incorporating feedback from the
process.

The stepwise variable selection was essential to our model
development. To handle missing data (when it was less than
35%), we opted for imputation, although it was not ideal.
Unfortunately, this approach also prevented us from includ-
ing potentially important information in our model if it was
missing for more than 35% of the subjects. Still, as the avail-
ability of the included variables in the routine management
of a patient admitted on an urgent or emergent basis was of
utmost importance to this study in terms of determining the
usability of the model, we opted for this approach. As labora-
tory tests are typically ordered based on clinical suspicion, a
common score development approach is to treat missing data as
normal [39]. To assess the viability of our model with such an
approach, we repeated the validation process, treating missing
values as normal, and the discriminatory capability remained
excellent. We further tested the missing variables’ impact by
running a sensitivity analysis solely on patients with complete
data, yielding similar results. Therefore, the sensitivity analy-
ses’ outcomes from our preliminary model are encouraging in
terms of missing variables’ impact. Nonetheless, we recognize
the need for further assessment of potentially significant vari-
ables which were overlooked due to the high missingness rates.
These variables will be further evaluated during the prospective
validation stage. The model’s performance to detect individual
unusual infections was lowest for blastomycosis, as expected,
given the lowest number of cases in the development dataset.
Contrarily, the model performed best in detecting mucormyco-
sis, although it was not the most prevalent in the development
dataset. The accuracy of the model’s individual disease predic-
tions warrants further exploration, as different models might
be necessary to effectively predict individual infections.

One of this study’s strengths lies in its substantial sample size
derived from a geographically diverse population of patients
from academic and community hospitals. Another strength of
our model is its consistent discriminatory performance across
different datasets. Our investigation spanned a wide range of
variables, including the highest and lowest values observed
throughout the day, where both extremes could hold signif-
icance. The variables were selected considering their routine
availability during hospital stays and ease of extraction from the
EHR, excluding any complex tests or subjective evaluations to
prioritize practicality. Additionally, all variables included are
from the first 72 h of hospitalization, allowing the model to
identify these patients early.

A primary limitation of this study is the utilization of an
internal validation cohort, which potentially overestimates the
model’s performance and restricts its applicability to broader
populations. Therefore, the initial subsequent phase of this

study will involve subjecting the preliminary model to external
validation, aiming to provide a more accurate portrayal of its
performance. Furthermore, the two-gate case-control design
might have introduced spectrum bias, overestimating diagnos-
tic performance [40]. This preliminary model needs to undergo
testing in real-world settings, such as through prospective val-
idation, before it might be considered suitable for clinical use.
Additionally, we refrained from specifying a cutoff value for
this model due to the constraints inherent in the study design,
which needs to be addressed during the prospective validation
phase. During the development of this preliminary model, cer-
tain significant factors, like pretest probability, were inadver-
tently overlooked. However, we intend to address this omission
during the prospective validation phase, where we will explore
their potential inclusion to fine-tune the model. Despite the
large overall sample size, the number of cases in our dataset was
small. To address this limitation, we intend to use techniques
such as the Synthetic Minority Over-Sampling Technique algo-
rithm to account for class imbalance in both the dataset at
hand and subsequent validation processes. Moreover, some
variables that could have had a significant impact on distin-
guishing infections of interest from other community-acquired
infections were solely accessible in free text formats, which
were not considered in this study. Additionally, the logistic
regression model operates under the assumption of linearity
among predictor variables, which may not always hold in prac-
tice. Incorporating additional machine learning techniques and
potentially leveraging large language models in future stages
of this study will help uncovering potential nonlinear relation-
ships between predictors and outcomes, as well as incorporat-
ing other pertinent variables. Incorporating variables that are
site-specific into the model and restricting the study to a single
health system, albeit comprising a diverse range of hospitals,
was another notable limitation diminishing the model’s gener-
alizability, further stressing the imperative for external vali-
dation. Although the diseases fall under a common category in
terms of typically requiring additional testing, their treatment
approaches differ considerably. A multiclass prediction model
that predicts specific classes of diseases will be the next step to
pursue. Another limitation pertains to missing data. While the
sensitivity analyses employing various approaches to manage
missing data yielded promising results, further studies with
more complete datasets are required. Excluding readmissions
during the study period, as well as patients undergoing effective
treatment for a certain period, may have introduced a sam-
pling bias that could affect the outcomes of our assessment.
However, these exclusions were considered essential to uphold
the independence of observations and to target the early diag-
nosis of patients. Another limitation inherent to the retrospec-
tive design of the study was our dependence on ICD codes
and chart reviews for confirming diagnoses. This prevented us
from assessing the model’s impact on patients who were never
accurately diagnosed. During the prospective validation phase,
patients will be tracked in real time and confirmed by subject
matter experts to mitigate the impact of this limitation. Further-
more, pediatric patients were outside of the scope of this study,
restricting the relevance of the findings to the adult patient
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demographic. Lastly, because the preliminary diagnostic model
was designed specifically for unusual infections, it would not
capture the entire spectrum of infections in the population.

Implications for practice and further research
Despite limitations, our study demonstrates the feasibility of
a diagnostic framework to identify unusual infections, which
are typically diagnosed late. The findings from this study will
inform the development of EHR-based screening tools and
bedside decision aids tasked at providing actionable informa-
tion prompting appropriate evaluations. Thus, the diagnosis
of unusual infections would be expedited, preventing adverse
patient outcomes, unnecessary healthcare resource use, antibi-
otic resistance, and potential public health exposures. As the
methodology primarily centers on detecting deviations from
“typical”, i.e., indicating unusual conditions, it will also provide
a framework that could be applicable to other rare diseases.

Conclusion
In this large multicenter study, we developed and validated a
model that accurately indicates unusual fungal infections and
tuberculosis in hospitalized patients using readily available
variables early during a hospitalization. The model also demon-
strated excellent performance in distinguishing patients with
unusual infections from those with other community-acquired
infections. Based on routinely available EHR data, our model
will inform the development of bedside tools for triggering
evaluation for rare and unusual infectious diseases, thereby
reducing the time to diagnosis.
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