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R E S E A R C H A R T I C L E

Rab8a/SNARE complex activation promotes vesicle
anchoring and transport in spinal astrocytes to drive
neuropathic pain
Yunqiao Xiao 1,2#, Gengyi Wang 2#, Guiqiong He 2, Wanxiang Qin 3, and Ying Shi 4∗

Neuropathic pain (NPP) remains a clinically challenging condition, driven by the activation of spinal astrocytes and the complex release
of inflammatory mediators. This study aimed to examine the roles of Rab8a and SNARE complex proteins in activated astrocytes to
uncover the underlying mechanisms of NPP. The research was conducted using a rat model with chronic constriction injury (CCI) of the
sciatic nerve and primary astrocytes treated with lipopolysaccharide (LPS). Enhanced expression of Rab8a was noted specifically in
spinal dorsal horn astrocytes through immunofluorescence (IF). Electron microscopy (EM) observations showed increased vesicular
transport and exocytic activity in activated astrocytes, which was corroborated by elevated levels of inflammatory cytokines, such as
interleukin (IL)-1β and tumor necrosis factor (TNF)-α detected through quantitative PCR. Western blot analyses confirmed significant
upregulation of Rab8a, VAMP2, and Syntaxin16 in these cells. Furthermore, the application of botulinum neurotoxin type A (BONT/A)
reduced the levels of vesicle transport-associated proteins, inhibiting vesicular transport in activated astrocytes. These findings
suggest that the Rab8a/SNARE pathway in astrocytes enhances vesicle transport and anchoring, increasing the secretion of bioactive
molecules that may play a crucial role in the pathophysiology of NPP. Inhibiting this pathway with BONT/A offers a novel therapeutic
target for managing NPP, highlighting its potential utility in clinical interventions.
Keywords: Neuropathic pain (NPP), astrocytes, Rab8a, vesicular transport, SNARE proteins.

Introduction
Neuropathic pain (NPP) represents a global therapeutic
challenge characterized by complex pathophysiological
mechanisms and a lack of effective clinical analgesics [1–5]. The
functional specificity of cortical networks and their projection
targets in the pain process occurs at least on four interconnected
levels: dynamic activity states within the cortical network;
functionally distinct subdomains; specific circuit connections
that distinguish pain from other functions; and co-active cell
assemblies [6]. Among these, intercellular communication and
molecular signaling pathways within specific circuit connec-
tions play a pivotal role in the sensitization and regulation of
nociceptive pathways in the sensory nervous system and the
pathological process of NPP [7–10].

Astrocytes, distinguishable by their expression of glial fib-
rillary acidic protein (GFAP) across all major branches and
processes, dynamically modulate in response to injury through
gap junction protein complexes that physically couple adja-
cent cells, allowing free exchange of ions and cytoplasmic
components [11]. Inhibition of astrocyte activation can signifi-
cantly alleviate pain caused by peripheral nerve damage in the
early stages of NPP [12–14]. Astrocytes mediate intercellular

communication within the nervous system through the pro-
duction and secretion of neuroactive substances [15–17]. Injury
signals drive phenotypic transformation of astrocytes and the
release of inflammatory mediators, playing roles in central and
peripheral sensitization and participating in the progression
of NPP. An important characteristic of their activation is the
increased release of bioactive molecules such as inflammatory
factors, ATP, and glutamate [18–24].

Furthermore, astrocytes contain vesicles that store and
release bioactive molecules in an activity-dependent manner,
a principal mechanism in the pathophysiology of neurodegen-
erative diseases [25–31]. However, the specific mechanisms by
which astrocytes in NPP increase the secretion of bioactive
molecules remain unclear [32], complicating the identification
of targets for intervention.

Rab proteins, acting as molecular switches in vesicle trans-
port, interact with upstream regulators and downstream effec-
tors, playing a critical role in vesicle movement, docking,
and fusion [33, 34]. In their active GTP-bound form, Rab pro-
teins activate downstream effector proteins, recruit cytoplas-
mic adhesion factors, and regulate vesicle dynamics [35–42].
The fusion of vesicles with the cell membrane also relies on
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a set of transmembrane proteins known as the soluble N-
ethylmaleimide-Sensitive factor attachment protein receptor
(SNARE) complex, which provides the molecular basis for
directed vesicle transport, targeting, docking, and membrane
fusion [43–45]. Currently, the role of Rab8a in vesicle release
processes in spinal astrocytes has not been reported. Thus, this
study aims to examine the modification of Rab8a in activated
astrocytes using a rat model with sciatic nerve ligation and
lipopolysaccharide (LPS)-treated primary astrocytes to inves-
tigate its role in SNARE complex formation and vesicle trans-
port and to explore the impact of the Rab8a/SNARE signaling
pathway on NPP and its mechanisms. By revealing the role of
this signaling pathway in regulating astrocyte vesicle transport
and secretion functions, we aim to provide a new perspective on
the molecular mechanisms of NPP and lay the groundwork for
developing targeted therapeutic strategies, which hold signifi-
cant scientific and clinical relevance.

Materials and methods
Experimental animal models
Male Sprague–Dawley (SD) rats, aged 7–8 weeks (200–230 g),
were obtained from the Experimental Animal Research Insti-
tute of the Army Medical University. These rats were housed
in a controlled environment at 25 °C with a 12-h light/dark
cycle, with free access to food and water. The animal experi-
mental processes were approved by the Ethnic Committee of
The First Affiliated Hospital of Chongqing Medical University
(AMUWEC20210719) and conducted in strict accordance with
the standard of the Guide for the Care and Use of Laboratory
Animals published by the Ministry of Science and Technology
of the People’s Republic of China in 2006.

Induction of NPP through chronic constriction injury (CCI)
Ten SD rats (aged 7–8 weeks, weighing 200–230 g) were
utilized. The sample size calculation was based on setting
the range of acceptable degrees of freedom (DF) for analysis
of variance (ANOVA) between 10 and 20. Let N represents
the total number of subjects, k represents the number of
groups, and n represents the number of subjects per group,
calculated as n = DF/k + 1. Hence, the minimum total sample
size N(min) was determined to be 6, and the maximum total
sample size N(max) was 11 [46]. The ten rats were randomly
divided into two groups: a normal group (control group, n = 5)
and a chronic constriction injury (CCI) group (ligation group,
n = 5). Each group underwent specific procedures: the normal
group received a sham operation without ligation; the CCI
group was subjected to a procedure established in previous
studies [47]. Briefly, a blunt dissection was performed in the
biceps femoris, exposing the common sciatic nerve at the
mid-thigh level. Approximately 1 cm of the nerve was freed
from the surrounding connective tissue near its trifurcation,
and three loops of 4.0 non-absorbable surgical suture (Shanghai
Fosun) were loosely tied around it at 1 mm intervals. Under
30× magnification, these ties did not significantly compress the
nerve’s diameter but did induce slight and transient twitches in
the muscles innervated by the sciatic nerve. The test animals
were subsequently maintained for 14 days.

Astrocyte culture
Primary astrocytes were prepared from one-day-old SD rats,
following the procedure described by Schildge et al. [48]. These
cells were isolated from the cerebral cortex and subsequently
cultured in 25 cm2 flasks precoated with 50 μg/mL poly-D-
lysine. The culture medium used was DMEM (Gibco, New York,
USA) supplemented with 10% heat-inactivated fetal bovine
serum and 1% penicillin–streptomycin (Beyotime, Shanghai,
China). The cultures were maintained under conditions of 5%
CO2 at 37 °C. The medium was replaced the day following the
initial culture and thereafter every two days. On the seventh
day, the cultures were placed on a rotating shaker at 37 °C for 6 h
(240 rpm) to detach microglial and oligodendrocyte precursor
cells. Following this, the medium was discarded, and the astro-
cytes were cultured at a final density of 1.2 × 106 cells per well
in 6-well plates and 4 × 104 cells per well in 96-well plates for
subsequent cell counting kit-8 (CCK8) assay.

In the drug treatment groups, astrocytes were co-incubated
with LPS (100 ng/mL) and botulinum toxin A (BONT/A)
(0.1 U/mL) for 1 h [49–52]. In this study, LPS was used as a
cell activator and BONT/A as a vesicular secretion inhibitor.
Immunofluorescence (IF) staining with GFAP (an astrocyte
marker, BM-0055, Bioss, Wuhan, China) was performed to
identify the astrocytes. A high-purity population of astrocytes
(over 95% GFAP-positive) was obtained [53]. To ensure cell
culture quality, high-quality fetal bovine serum and culture
medium, along with sterile plastic products designed specifi-
cally for tissue culture, were used. To prevent microbial con-
tamination, 100 U/mL penicillin–streptomycin (Bi Yun Tian,
C0222) was employed to protect against cellular contamination.
Mycoplasma testing was performed prior to experiments to
exclude mycoplasma infections.

Cell viability assay
Cell viability was assessed using CCK-8 (Bioss, Beijing, China).
Astrocytes were cultured in 96-well plates for 24 h. Following
treatment with LPS (100 ng/mL) for 24 h, CCK-8 solution was
added to each well and incubated at 37 °C for 2 h. Absorbance
was measured at 450 nm using a microplate reader.

Immunohistochemistry (IHC)
Spinal cord tissues from CCI rats were collected on day
14 post-sciatic nerve ligation. Rats were deeply anesthetized
with isoflurane (2%–2.5%, airflow 500–700 mL/min) and then
perfused intracardially with 4% paraformaldehyde (Sigma)
pre-cooled to 4 °C. The spinal cord was quickly removed and
immersed in 4% paraformaldehyde at 4 °C overnight. After fix-
ation, the spinal cord was dehydrated, and the lumbar enlarge-
ment region was sectioned into 16-μm thick slices. Endogenous
peroxidase activity was blocked using 3% H2O2 for 20 min.
Sections were incubated with 10% normal goat serum and anti-
Rab8a antibody (1:150; LifeSpan Biosciences) at 37 °C for 1 h,
followed by overnight incubation at 4 °C. After PBS rinsing,
sections were incubated at 37 °C for 1 h and visualized using an
enhanced nickel-DAB staining reagent for 5 min. IHC images
were captured using a microscope (Leica). Five random spinal
cord sections were selected by two experienced pathologists in a
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blinded manner, and the average optical density of all positively
stained astrocytes in the selected fields was measured and ana-
lyzed using Image-Pro Plus 6.0.

Immunofluorescence (IF) staining
For double-labeling IF experiments on spinal cord sections,
prepared slices were treated with 3% H2O2 for 20 min to sup-
press endogenous peroxidase activity. The sections were then
incubated at 37 °C for 1 h, followed by overnight treatment at
4 °C with 10% normal goat serum. Subsequently, the slices were
incubated with anti-GFAP monoclonal antibody (1:250, Bioss) at
37 °C for 1 h, followed by co-incubation with anti-Rab8a poly-
clonal antibody (1:150, LifeSpan Biosciences) at 37 °C for 1 h, and
then overnight at 4 °C. FITC-conjugated goat anti-mouse anti-
body (1:500, Abcam, UK) and Cy3-conjugated goat anti-rabbit
antibody (1:600, Jackson ImmunoResearch, USA) were added
and incubated at 37 °C for 1 h. Finally, nuclei were stained
with 4′,6-diamidino-2-phenylindole (DAPI) (Sigma, USA) and
analyzed by two experienced pathologists in a blinded manner
using a laser scanning confocal microscope (Olympus, Japan).

For IF staining experiments detecting GFAP in astrocytes,
astrocytes grown on microscope slides were fixed in 4%
paraformaldehyde at 37 °C for 30 min, followed by incubation
in 5% BSA at 37 °C for 1 h and then overnight incubated with
anti-GFAP monoclonal antibody (1:250, Bioss) at 4 °C. The cells
were then incubated at 37 °C for 1 h with FITC-conjugated goat
anti-mouse antibody (1:500, Abcam, UK). Nuclei were visual-
ized with DAPI staining (Bioss, Beijing, China), and images were
captured using a microscope (Leica).

In the double-labeling, IF experiments, astrocytes grown on
microscope slides were fixed with 4% paraformaldehyde at 37 °C
for 30 min, then incubated in 5% BSA at 37 °C for 1 h, fol-
lowed by overnight incubation with anti-Rab8a polyclonal anti-
body (1:250, LifeSpan Biosciences) at 4 °C. FITC-conjugated goat
anti-mouse antibody (1:500, Abcam, UK) and Cy3-conjugated
goat anti-rabbit antibody (1:600, Jackson ImmunoResearch,
USA) were added and incubated at 37 °C for 1 h. Nuclei were
stained with DAPI (Cat# D9542-5MG, Sigma, USA) and analyzed
using a laser scanning confocal microscope (Leica).

Western blot (WB) assay
Cell lysates were collected from primary astrocyte cultures in
RIPA buffer containing a protease inhibitor cocktail for Western
blot analysis 1-h post-LPS stimulation. The reaction mixtures
were centrifuged at 12,000 × g for 15 min at 4 °C. Samples
containing 2 μg of protein were heated at 100 °C for 5 min
in a loading buffer (5× Loading Buffer, Beyotime, Shanghai,
China). Separation was conducted using polyacrylamide gels
(10%–12.5%, Epizyme, Beijing, China). Following membrane
transfer, the membranes were incubated overnight at 4 °C with
anti-GFAP monoclonal antibody (1:1000, Bioss), anti-Rab8a
polyclonal antibody (1:1000, LifeSpan), anti-VAMP2 polyclonal
antibody (1:1000, Cell Signaling), anti-Syntaxin16 polyclonal
antibody (1:1000, Cell Signaling), and anti-β-actin (1:1000, Pro-
teintech). The membranes were then incubated for 1 h with
horseradish peroxidase-conjugated secondary antibodies and
visualized using ECL solution (Biosharp, Shanghai, China).

Immunocomplexes were detected using the Bio-Rad system,
and relative immunoreactivity levels were quantified using
Image Lab software.

Quantitative real-time polymerase chain reaction (qPCR)
Total RNA from astrocytes was isolated using the RNAeasy™
animal RNA isolation kit with the spin column, following the
manufacturer’s instructions (Beyotime, Shanghai, China). RNA
sample transcription was repeated using the PrimeScript™ RT
reagent kit with gDNA Eraser (Takara, Japan), according to the
manufacturer’s instructions. Real-time qPCR was conducted
using SYBR Premix Ex Taq II (Takara). The thermal cycling
program included a 10-min pre-incubation at 95 °C, followed by
45 cycles of 10 s at 95 °C, 30 s at 60 °C, and 60 s at 65 °C. The
specificity of the PCR products was verified through melt curve
analysis.

Electron microscopy (EM)
Astrocytes were co-incubated with LPS (100 ng/mL) or LPS
(100 ng/mL) and BONT/A (0.1 U/mL) for 24 h. Cells were then
detached using a 0.025% trypsin-EDTA solution and fixed with
2.5% glutaraldehyde at 4 °C for 12 h. The prepared cells were
further fixed with 1% osmium tetroxide at 4 °C for 1 h. After gra-
dient dehydration, the cells were embedded in resin. Embedded
cell sections were then observed under a transmission EM.

Ethical statement
The animal experimental processes were approved by the
Ethics Committee of Third Military Medical university
(AMUWEC20210719) and conducted in strict accordance with
the standard of the Guide for the Care and Use of Laboratory
Animals published by the Ministry of Science and Technology
of the People’s Republic of China in 2006.

Statistical analysis
All statistical analyses were conducted using version 4.2.1 of
R (R Foundation for Statistical Computing). Quantitative data
in this study were analyzed using GraphPad Prism version
9.5.0. Data were presented as mean ± standard deviation. Ini-
tially, tests for normality and homogeneity of variance were
performed. If the data were normally distributed and the vari-
ances were homogeneous, unpaired t-tests were used to com-
pare differences between the two groups. One-way ANOVA
was employed to compare differences among multiple groups,
followed by Tukey’s post-hoc test for pairwise comparisons.
A P < 0.05 was considered statistically significant, while a
P < 0.01 was considered highly significant.

Results
Activation of astrocytes and increased Rab8a expression in the
spinal dorsal horn of CCI rats
In our study of the sciatic nerve ligation model in rats, we
conducted IHC and IF staining to investigate the potential mech-
anisms related to astrocytes in NPP. IHC analysis revealed a sig-
nificant increase in Rab8a expression in the spinal dorsal horn
of rats subjected to sciatic nerve ligation compared to controls
(Figure 1A and 1B, P < 0.01).
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Figure 1. Activation of astrocytes and Rab8a expression in the spinal dorsal horn of CCI rats. (A) IHC staining of Rab8a in the spinal dorsal horn of CCI
rats; (B) Quantitative analysis of Rab8a protein in the spinal dorsal horn of CCI rats; (C) IF staining in the spinal dorsal horn of CCI rats, showing GFAP-positive
cells (green fluorescence) and the distribution of Rab8a (red fluorescence). **P < 0.01. CCI: Chronic constriction injury; IHC: Immunohistochemistry; GFAP:
Glial fibrillary acidic protein.

IF staining further explored the distribution of Rab8a in
the spinal dorsal horn. GFAP (green fluorescence), a marker of
astrocytes, showed a notable increase in the NPP model, indicat-
ing the activation of astrocytes. Rab8a (red fluorescence) stain-
ing was observed in various cell types within the spinal dorsal
horn, but a significant increase in Rab8a expression was evident
in activated astrocytes (Figure 1C). These findings highlight the
association between Rab8a expression and astrocyte activation,
suggesting its potential importance in the pathophysiology of
NPP.

Upregulation of cytokine expression in LPS-induced activated
astrocytes
LPS is commonly utilized to simulate inflammatory responses,
prompting a series of experiments to investigate its effects on
astrocytes. Initially, we assessed the viability of astrocytes to
gauge the activating effect of LPS. The results demonstrated a
significant increase in the survival rate of astrocytes cultured
with LPS compared to the control group (Figure 2A, P < 0.05).

IF and Western blot analyses revealed a significant increase
in the expression of the GFAP protein in cells treated with
LPS (Figure 2B, P < 0.05). Moreover, compared to the control
group, cells in the LPS group exhibited increased cell volume
and shorter, thicker processes (Figure 2C). This phenomenon

likely reflects the morphological changes of astrocytes under
LPS treatment, further supporting their activated state.

Further analysis through qPCR was conducted to measure
the mRNA levels of pro-inflammatory cytokines, including
TNF-α and IL-1β, in activated astrocytes. The results showed
significant upregulation of TNF-α and IL-1β mRNA levels in
activated astrocytes (Figure 3A and 3B, P < 0.001).

In summary, our findings reveal the activating effects of
LPS on astrocytes, including increased cell viability, elevated
expression of GFAP protein, morphological changes, and the
upregulation of pro-inflammatory cytokines TNF-α and IL-1β
mRNA levels in activated astrocytes.

Increased vesicular transport in LPS-induced activated
astrocytes
To investigate changes in vesicular transport within activated
astrocytes, EM was employed to examine vesicular transport.
In the LPS-treated group, the Golgi apparatus was increased and
enlarged, with more Golgi vesicles around the trans-Golgi net-
work (TGN). Mitochondrial numbers were increased, showing
swollen, spherical forms with reduced cristae. The quantity of
vesicles in activated astrocytes was higher in the LPS group,
with vesicles accumulating near the cell membrane (Figure 4A
and 4B).
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Figure 2. The effects of LPS on astrocytes. (A) The survival rate of astrocytes post-LPS treatment; (B) GFAP protein expression in astrocytes post-LPS
treatment detected by Western blot; (C) IF staining of astrocytes post-LPS treatment, showing GFAP-positive cells (green fluorescence) and morphological
changes. *P < 0.05. GFAP: Glial fibrillary acidic protein; LPS: Lipopolysaccharide; IF: Immunofluorescence.
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Figure 3. Expression of cytokines in activated astrocytes. (A) qPCR detection of TNF-α mRNA levels in astrocytes post-LPS treatment; (B) qPCR detection
of IL-1β mRNA levels in astrocytes post-LPS treatment. ***P < 0.001. LPS: Lipopolysaccharide; qPCR: Quantitative real-time polymerase chain reaction.

Given the molecular basis of vesicle and plasma mem-
brane fusion established by the SNARE complex [44], the
co-expression of Rab8a and VAMP2 in activated astrocytes was
further investigated through IF experiments. It was observed
that the positive IF staining of Rab8a and VAMP2 was more
aggregated in activated astrocytes. Additionally, astrocytes
activated by LPS also exhibited co-localization of Rab8a and
VAMP2 expression, with these proteins displaying a relatively
uniform distribution across various cell types (Figure 5A).

Furthermore, co-localization of Rab8a and Syntaxin16
expression was also observed in astrocytes activated by LPS.
However, the distribution of the positive IF staining for Rab8a
and Syntaxin16 was not entirely consistent across different
activated astrocytes (Figure 5B).

Western blot analysis further examined the expression lev-
els of vesicular transport-related proteins (Rab8a, VAMP2, and
Syntaxin16). The results indicated that, following LPS treat-
ment, the levels of Rab8a, VAMP2, and Syntaxin16 proteins
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Figure 5. Levels of vesicular transport-related proteins in activated astrocytes. (A and B) IF staining of VAMP2 and Syntaxin16 in astrocytes post-LPS
treatment; (C–E) Western blot detection of Rab8a and SNARE proteins (VAMP2 and Syntaxin16) levels in astrocytes post-LPS treatment. *P < 0.05,
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were significantly higher in astrocytes compared to the control
group (Figure 5C–5E, P < 0.05).

These findings reveal increased vesicular transport in
LPS-induced activated astrocytes, accompanied by upregula-
tion of protein levels of Rab8a and SNARE.

BONT/A inhibits vesicular transport in LPS-induced activated
astrocytes
To assess the impact of the vesicular secretion inhibitor
BONT/A on vesicular transport, we conducted Western blot
experiments to detect changes in proteins related to vesicular
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transport (Rab8a, VAMP2, and Syntaxin16) in astrocytes acti-
vated by LPS treatment following BONT/A administration. The
results indicated a significant reduction in the expression levels
of Rab8a, VAMP2, and Syntaxin16 proteins in astrocytes treated
with BONT/A (BTX group) compared to those treated with LPS
alone (LPS group) (Figure 6A–6D).

To gain a comprehensive understanding of BONT/A’s effect,
EM was used to evaluate changes in vesicular transport. The
findings demonstrated that vesicular transport within astro-
cytes activated by LPS was significantly inhibited following
BONT/A treatment, evidenced by a decrease in the number of
intracellular vesicles and a marked reduction in vesicle accu-
mulation near the cell membrane (Figure 7A and 7B).

These results reveal the inhibitory effect of BONT/A on
vesicular transport in astrocytes activated by LPS induction.

Discussion
Our research demonstrates that injury signals drive the trans-
formation and activation of astrocytes, leading to increased
release of pain-associated bioactive molecules, such as inflam-
matory factors, ATP, and glutamate. These molecules play
roles in central and peripheral sensitization and contribute
to the progression of NPP [18, 19]. Astrocyte activation is a
heterogeneous process involving multiple molecular, cellu-
lar, and functional changes, including alterations in vesicu-
lar secretion [25, 54–56]. However, the specific mechanisms
underlying vesicle and inflammatory mediator release remain
unclear [32]. Rab8a protein and the SNARE complex are
involved in vesicle-directed transport, targeting docking, and
fusion with the cell membrane [43–45], but their mechanisms
in NPP have yet to be confirmed.
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Figure 8. Activated Rab8a/SNARE complex drives the molecular mechanism of NPP by promoting vesicle anchoring and transportation in
spinal astrocytes. NPP: Neuropathic pain; GTP: Guanosine triphosphate; VAMP2: Vesicle-associated membrane protein; V-SNARE: Vesicle soluble
N-ethylmaleimide-sensitive factor attachment protein receptor; t-SNARE: Target soluble N-ethylmaleimide-sensitive factor attachment protein receptor.

In our study using a CCI rat model, Rab8a was highly
expressed in astrocytes within the spinal dorsal horn following
neural injury, suggesting increased vesicle docking and trans-
port activity, a possible manifestation of astrocyte activation.
EM revealed a significant increase in internal vesicle number
and transport activity toward the plasma membrane, resulting
in heightened exocytic activity. Quantitative PCR, IF, and West-
ern blot results showed significant increases in the expression
of cytokines, such as TNF-α and IL-1β, as well as Rab8a, VAMP2,
and Syntaxin16 in activated astrocytes. Treatment with BON-
T/A significantly reduced the levels of Rab8a, VAMP2, and
Syntaxin16 proteins in astrocytes. Collectively, these findings
suggest that the activation of the Rab8a/SNARE complex path-
way is crucial for vesicular transport and bioactive molecule
release in astrocytes and represents an important component in
the pathogenesis of NPP.

Rab8a, a small GTPase, is essential for vesicle transport in
various cell types and is involved in cilia formation [57, 58].
Rab8a can interact with effectors or directly with SNARE to
recognize t-SNARE on target membranes, promoting v-SNARE
and t-SNARE pairing, thus guiding vesicle-directed transport
and targeted docking [59–64]. The control of vesicle trans-
port by Rab8a may facilitate the formation of different mem-
brane protrusions, while VAMP2 and Syntaxin16, components
of the SNARE complex, are critical proteins in vesicle dock-
ing. Our results, combined with previous studies [65, 66],
suggest that Rab8a-mediated enhanced transport of vesicles
from the TGN to the plasma membrane may underpin the

molecular basis for astrocyte release of bioactive molecules
involved in the onset and maintenance of NPP. Enhanced vesic-
ular transport in LPS-activated astrocyte models likely rep-
resents a crucial mechanism for the secretion of bioactive
molecules by activated astrocytes, with activated pathways
for cytokine synthesis and secretion contributing to disease
progression.

Furthermore, the application of BONT/A suggests that tar-
geting components of the SNARE complex can effectively
reduce vesicular transport in astrocytes. Preclinical and clin-
ical studies have reported the efficacy of BONT/A in treat-
ing central NPP. BONT/A inhibits the secretion of substance
P and calcitonin gene-related peptide (CGRP) in DRG, sup-
presses the expression of TRPV1 and P2X3, and exerts central
effects through retrograde axonal transport [67–70]. BONT/A
not only cleaves SNAP-25 at presynaptic terminals but also
cleaves SNARE proteins retrogradely in growth cones and the
central brain, inhibiting the exocytosis of vesicles containing
norepinephrine, glutamate, substance P, and CGRP, as well as
the expression of vanilloid receptors.

Although this study provides important insights into the
role of the Rab8a/SNARE complex in NPP, it has limitations.
Firstly, the study is primarily based on animal models and cell
experiments, and its results need further validation in humans.
Secondly, although BONT/A can inhibit vesicular transport in
astrocytes, its specific mechanisms of action and long-term
effects require further investigation. Additionally, this study
did not fully resolve all potential molecular mechanisms
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of the Rab8a/SNARE complex pathway in the pathogene-
sis of NPP, necessitating further research to elucidate these
mechanisms.

Conclusion
In summary, our study reveals that the activation of the
Rab8a/SNARE complex pathway and subsequent enhanced
vesicle transport activity in the spinal dorsal horn following
neural injury are likely critical components in the cytokine
cascade reaction mechanisms of NPP (Figure 8). By elucidating
the role of the Rab8a/SNARE complex in the development of
NPP, this study provides important insights for understanding
the molecular basis of NPP and developing new therapeutic
strategies. Given the persistent activation of astrocytes under
chronic pain conditions and their recognized role in NPP,
directing therapeutic interventions toward reactive astrocytes
holds significant potential. Our research demonstrates the
critical role of these proteins in astrocytes and emphasizes
the importance of vesicle transport in regulating NPP, offer-
ing new potential targets for NPP treatment. Targeting the
Rab8a/SNARE complex pathway could be an effective strat-
egy for alleviating or treating NPP. Based on our current
understanding of astrocyte-mediated NPP, considering target-
ing related signaling pathways, hemichannels, or purinergic
receptors to inhibit the release of neuroglial mediators, such
as by inhibiting the expression or function of Rab8a to reduce
the release of inflammatory mediators, could provide valuable
directions for developing novel NPP therapeutic drugs. Addi-
tionally, targeting downstream mediators released by astro-
cytes, such as chemokines and cytokine signaling, is a viable
treatment strategy. Given that astrocyte dysregulation is a com-
mon feature of nearly all chronic pain pathologies, and the acti-
vation of astrocytes remains strong throughout persistent pain
conditions, whether targeting the activation of astrocytes or
preventing their transition to a pro-inflammatory state without
affecting their normal homeostatic functions remains a signifi-
cant challenge.

Future research should focus on several key areas. Firstly,
the findings of this study need to be validated in a broader
range of biological models and explored through clinical
studies to assess their potential application in human NPP
treatment. Secondly, specific intervention methods target-
ing the Rab8a/SNARE complex pathway, including small
molecule inhibitors, and RNA interference techniques, should
be explored to develop new treatment strategies. Addition-
ally, investigating the role of the Rab8a/SNARE complex in
other cell types beyond astrocytes, such as neurons and
microglia, may reveal more complex pathological mechanisms
of NPP.
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