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ABSTRACT 23 

Neuropathic pain (NPP) remains a clinically challenging condition, driven by the activation 24 

of spinal astrocytes and the complex release of inflammatory mediators. This study aimed to 25 

examine the roles of Rab8a and SNARE complex proteins in activated astrocytes to uncover 26 

the underlying mechanisms of NPP. The research was conducted using a rat model with 27 

chronic constriction injury (CCI) of the sciatic nerve and primary astrocytes treated with 28 

lipopolysaccharide. Enhanced expression of Rab8a was noted specifically in spinal dorsal 29 

horn astrocytes through immunofluorescence. Electron microscopy observations showed 30 

increased vesicular transport and exocytic activity in activated astrocytes, which was 31 

corroborated by elevated levels of inflammatory cytokines such as IL-1β and TNF-α detected 32 

through quantitative PCR. Western blot analyses confirmed significant upregulation of Rab8a, 33 

VAMP2, and Syntaxin16 in these cells. Furthermore, the application of botulinum neurotoxin 34 

type A (BONT/A) reduced the levels of vesicle transport-associated proteins, inhibiting 35 

vesicular transport in activated astrocytes. These findings suggest that the Rab8a/SNARE 36 

pathway in astrocytes enhances vesicle transport and anchoring, increasing the secretion of 37 

bioactive molecules that may play a crucial role in the pathophysiology of NPP. Inhibiting 38 

this pathway with BONT/A offers a novel therapeutic target for managing NPP, highlighting 39 

its potential utility in clinical interventions. 40 

KEYWORDS: Neuropathic pain, astrocytes, Rab8a, vesicular transport, SNARE proteins 41 
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INTRODUCTION 43 

Neuropathic pain (NPP) represents a global therapeutic challenge characterized by complex 44 

pathophysiological mechanisms and a lack of effective clinical analgesics [1, 2, 3, 4, 5]. The 45 

functional specificity of cortical networks and their projection targets in the pain process 46 

occurs at least on four interconnected levels: dynamic activity states within the cortical 47 

network; functionally distinct subdomains; specific circuit connections that distinguish pain 48 

from other functions; and co-active cell assemblies [6]. Among these, intercellular 49 

communication and molecular signaling pathways within specific circuit connections play a 50 

pivotal role in the sensitization and regulation of nociceptive pathways in the sensory nervous 51 

system and the pathological process of NPP [7, 8, 9, 10]. 52 

Astrocytes, distinguishable by their expression of glial fibrillary acidic protein (GFAP) across 53 

all major branches and processes, dynamically modulate in response to injury through gap 54 

junction protein complexes that physically couple adjacent cells, allowing free exchange of 55 

ions and cytoplasmic components [11]. Inhibition of astrocyte activation can significantly 56 

alleviate pain caused by peripheral nerve damage in the early stages of NPP [12, 13, 14]. 57 

Astrocytes mediate intercellular communication within the nervous system through the 58 

production and secretion of neuroactive substances [15, 16, 17]. Injury signals drive 59 

phenotypic transformation of astrocytes and the release of inflammatory mediators, playing 60 

roles in central and peripheral sensitization and participating in the progression of NPP. An 61 

important characteristic of their activation is the increased release of bioactive molecules 62 

such as inflammatory factors, ATP, and glutamate [18, 19, 20, 21, 22, 23, 24]. 63 

Furthermore, astrocytes contain vesicles that store and release bioactive molecules in an 64 

activity-dependent manner, a principal mechanism in the pathophysiology of 65 

neurodegenerative diseases [25, 26, 27, 28, 29, 30, 31]. However, the specific mechanisms by 66 

which astrocytes in NPP increase the secretion of bioactive molecules remain unclear [32], 67 
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complicating the identification of targets for intervention. 68 

Rab proteins, acting as molecular switches in vesicle transport, interact with upstream 69 

regulators and downstream effectors, playing a critical role in vesicle movement, docking, 70 

and fusion [33, 34]. In their active GTP-bound form, Rab proteins activate downstream 71 

effector proteins, recruit cytoplasmic adhesion factors, and regulate vesicle dynamics [35, 36, 72 

37, 38, 39, 40, 41, 42]. The fusion of vesicles with the cell membrane also relies on a set of 73 

transmembrane proteins known as the SNARE complex, which provides the molecular basis 74 

for directed vesicle transport, targeting, docking, and membrane fusion [43, 44, 45]. Currently, 75 

the role of Rab8a in vesicle release processes in spinal astrocytes has not been reported. Thus, 76 

this study aims to examine the modification of Rab8a in activated astrocytes using a rat 77 

model with sciatic nerve ligation and lipopolysaccharide (LPS)-treated primary astrocytes to 78 

investigate its role in SNARE complex formation and vesicle transport and to explore the 79 

impact of the Rab8a/SNARE signaling pathway on NPP and its mechanisms. By revealing 80 

the role of this signaling pathway in regulating astrocyte vesicle transport and secretion 81 

functions, we aim to provide a new perspective on the molecular mechanisms of NPP and lay 82 

the groundwork for developing targeted therapeutic strategies, which hold significant 83 

scientific and clinical relevance. 84 

 85 

MATERIALS AND METHODS 86 

Experimental animals  87 

Male Sprague-Dawley (SD) rats, aged 7-8 weeks (200-230 g), were obtained from the 88 

Experimental Animal Research Institute of the Army Medical University. These rats were 89 

housed in a controlled environment at 25°C with a 12-hour light/dark cycle, with free access 90 

to food and water. The animal experimental processes were approved by the Ethnic 91 

Committee of The First Affiliated Hospital of Chongqing Medical University 92 
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(AMUWEC20210719) and conducted in strict accordance with the standard of the Guide for 93 

the Care and Use of Laboratory Animals published by the Ministry of Science and 94 

Technology of the People's Republic of China in 2006. 95 

 96 

Induction of NPP through chronic constriction injury (CCI)  97 

Ten SD rats (aged 7-8 weeks, weighing 200-230 g) were utilized. The sample size calculation 98 

was based on setting the range of acceptable degrees of freedom (DF) for ANOVA analysis 99 

between 10 and 20. Let N represent the total number of subjects, k the number of groups, and 100 

n the number of subjects per group, calculated as n = DF/k + 1. Hence, the minimum total 101 

sample size N(min) was determined to be 6, and the maximum total sample size N(max) was 102 

11 [46]. The ten rats were randomly divided into two groups: a normal group (control group, 103 

n=5) and a CCI group (ligation group, n=5). Each group underwent specific procedures: the 104 

normal group received a sham operation without ligation; the CCI group was subjected to a 105 

procedure established in previous studies [47]. Briefly, a blunt dissection was performed in 106 

the biceps femoris, exposing the common sciatic nerve at the mid-thigh level. Approximately 107 

1 cm of the nerve was freed from surrounding connective tissue near its trifurcation, and three 108 

loops of 4.0 non-absorbable surgical suture (Shanghai Fosun) were loosely tied around it at 1 109 

mm intervals. Under 30x magnification, these ties did not significantly compress the nerve's 110 

diameter but did induce slight and transient twitches in the muscles innervated by the sciatic 111 

nerve. The test animals were subsequently maintained for 14 days. 112 

 113 

Astrocyte culture  114 

Primary astrocytes were prepared from one-day-old SD rats, following the procedure 115 

described by Sebastian Schildge et al. [48]. These cells were isolated from the cerebral cortex 116 

and subsequently cultured in 25 cm2 flasks pre-coated with 50 μg/mL poly-D-lysine. The 117 
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culture medium used was DMEM (Gibco, New York, USA) supplemented with 10% 118 

heat-inactivated fetal bovine serum and 1% penicillin-streptomycin (Beyotime, Shanghai, 119 

China). The cultures were maintained under conditions of 5% CO2 at 37°C. The medium was 120 

replaced the day following the initial culture and thereafter every two days. On the seventh 121 

day, the cultures were placed on a rotating shaker at 37°C for 6 hours (240 rpm) to detach 122 

microglial and oligodendrocyte precursor cells. Following this, the medium was discarded, 123 

and the astrocytes were cultured at a final density of 1.2 × 106 cells per well in 6-well plates 124 

and 4 × 104 cells per well in 96-well plates for subsequent cell counting kit-8 (CCK8) assay. 125 

In the drug treatment groups, astrocytes were co-incubated with LPS (100 ng/mL) and 126 

botulinum toxin A (BONT/A) (0.1 U/mL) for one hour [49, 50, 51, 52]. In this study, LPS 127 

was used as a cell activator and BONT/A as a vesicular secretion inhibitor. 128 

Immunofluorescence (IF) staining with GFAP (an astrocyte marker, BM-0055, Bioss, Wuhan, 129 

China) was performed to identify the astrocytes. A high-purity population of astrocytes (over 130 

95% GFAP-positive) was obtained [53]. To ensure cell culture quality, high-quality fetal 131 

bovine serum and culture medium, along with sterile plastic products designed specifically 132 

for tissue culture, were used. To prevent microbial contamination, 100 U/mL 133 

penicillin-streptomycin (Bi Yun Tian, C0222) was employed to protect against cellular 134 

contamination. Mycoplasma testing was performed prior to experiments to exclude 135 

mycoplasma infections. 136 

 137 

Cell viability assay  138 

Cell viability was assessed using CCK-8 (Bioss, Beijing, China). Astrocytes were cultured in 139 

96-well plates for 24 hours. Following treatment with LPS (100 ng/mL) for 24 hours, CCK-8 140 

solution was added to each well and incubated at 37°C for 2 hours. Absorbance was 141 

measured at 450 nm using a microplate reader. 142 
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Immunohistochemistry (IHC)  143 

Spinal cord tissues from CCI rats were collected on day 14 post-sciatic nerve ligation. Rats 144 

were deeply anesthetized with isoflurane (2-2.5%, airflow 500-700 mL/min) and then 145 

perfused intracardially with 4% paraformaldehyde (Sigma) pre-cooled to 4°C. The spinal 146 

cord was quickly removed and immersed in 4% paraformaldehyde at 4°C overnight. After 147 

fixation, the spinal cord was dehydrated, and the lumbar enlargement region was sectioned 148 

into 16 μm thick slices. Endogenous peroxidase activity was blocked using 3% H2O2 for 20 149 

minutes. Sections were incubated with 10% normal goat serum and anti-Rab8a antibody 150 

(1:150; LifeSpan Biosciences) at 37°C for 1 hour, followed by overnight incubation at 4°C. 151 

After PBS rinsing, sections were incubated at 37°C for 1 hour and visualized using an 152 

enhanced nickel-DAB staining reagent for 5 minutes. IHC images were captured using a 153 

microscope (Leica). Five random spinal cord sections were selected by two experienced 154 

pathologists in a blinded manner, and the average optical density of all positively stained 155 

astrocytes in the selected fields was measured and analyzed using Image-Pro Plus 6.0. 156 

 157 

Immunofluorescence (IF) staining 158 

For double-labeling IF experiments on spinal cord sections, prepared slices were treated with 159 

3% H2O2 for 20 minutes to suppress endogenous peroxidase activity. The sections were then 160 

incubated at 37°C for 1 hour, followed by overnight treatment at 4°C with 10% normal goat 161 

serum. Subsequently, the slices were incubated with anti-GFAP monoclonal antibody (1:250, 162 

Bioss) at 37°C for 1 hour, followed by co-incubation with anti-Rab8a polyclonal antibody 163 

(1:150, LifeSpan Biosciences) at 37°C for 1 hour, and then overnight at 4°C. 164 

FITC-conjugated goat anti-mouse antibody (1:500, Abcam, UK) and Cy3-conjugated goat 165 

anti-rabbit antibody (1:600, Jackson ImmunoResearch, USA) were added and incubated at 166 

37°C for 1 hour. Finally, nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI) 167 
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(Sigma, USA) and analyzed by two experienced pathologists in a blinded manner using a 168 

laser scanning confocal microscope (Olympus, Japan). 169 

For IF staining experiments detecting GFAP in astrocytes, astrocytes grown on microscope 170 

slides were fixed in 4% paraformaldehyde at 37°C for 30 minutes, followed by incubation in 171 

5% BSA at 37°C for 1 hour and then overnight incubated with anti-GFAP monoclonal 172 

antibody (1:250, Bioss) at 4°C. The cells were then incubated at 37°C for 1 hour with 173 

FITC-conjugated goat anti-mouse antibody (1:500, Abcam, UK). Nuclei were visualized with 174 

DAPI staining (Bioss, Beijing, China), and images were captured using a microscope (Leica). 175 

In the double-labeling, IF experiments, astrocytes grown on microscope slides were fixed 176 

with 4% paraformaldehyde at 37°C for 30 minutes, then incubated in 5% BSA at 37°C for 1 177 

hour, followed by overnight incubation with anti-Rab8a polyclonal antibody (1:250, LifeSpan 178 

Biosciences) at 4°C. FITC-conjugated goat anti-mouse antibody (1:500, Abcam, UK) and 179 

Cy3-conjugated goat anti-rabbit antibody (1:600, Jackson ImmunoResearch, USA) were 180 

added and incubated at 37°C for 1 hour. Nuclei were stained with DAPI (Cat# D9542-5MG, 181 

Sigma, USA) and analyzed using a laser scanning confocal microscope (Leica). 182 

 183 

Western blot assay  184 

Cell lysates were collected from primary astrocyte cultures in RIPA buffer containing a 185 

protease inhibitor cocktail for Western blot analysis 1-hour post-LPS stimulation. The 186 

reaction mixtures were centrifuged at 12,000 × g for 15 minutes at 4°C. Samples containing 2 187 

µg of protein were heated at 100°C for 5 minutes in a loading buffer (5x Loading Buffer, 188 

Beyotime, Shanghai, China). Separation was conducted using polyacrylamide gels (10-12.5%, 189 

Epizyme, Beijing, China). Following membrane transfer, the membranes were incubated 190 

overnight at 4°C with anti-GFAP monoclonal antibody (1:1000, Bioss), anti-Rab8a 191 

polyclonal antibody (1:1000, LifeSpan), anti-VAMP2 polyclonal antibody (1:1000, Cell 192 
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Signaling), anti-Syntaxin16 polyclonal antibody (1:1000, Cell Signaling), and anti-β-actin 193 

(1:1000, Proteintech). The membranes were then incubated for 1 hour with horseradish 194 

peroxidase-conjugated secondary antibodies and visualized using ECL solution (Biosharp, 195 

Shanghai, China). Immunocomplexes were detected using the Bio-Rad system, and relative 196 

immunoreactivity levels were quantified using Image Lab software. 197 

 198 

Quantitative real-time polymerase chain reaction (qPCR)  199 

Total RNA from astrocytes was isolated using the RNAeasy™ animal RNA isolation kit with 200 

the spin column, following the manufacturer's instructions (Beyotime, Shanghai, China). 201 

RNA sample transcription was repeated using the PrimeScript™ RT reagent kit with gDNA 202 

Eraser (Takara, Japan), according to the manufacturer's instructions. Real-time qPCR was 203 

conducted using SYBR Premix Ex Taq II (Takara). The thermal cycling program included a 204 

10-minute pre-incubation at 95°C, followed by 45 cycles of 10 seconds at 95°C, 30 seconds 205 

at 60°C, and 60 seconds at 65°C. The specificity of the PCR products was verified through 206 

melt curve analysis. 207 

 208 

Electron microscopy (EM)  209 

Astrocytes were co-incubated with LPS (100 ng/mL) or LPS (100 ng/mL) and BONT/A (0.1 210 

U/mL) for 24 hours. Cells were then detached using a 0.025% trypsin-EDTA solution and 211 

fixed with 2.5% glutaraldehyde at 4°C for 12 hours. The prepared cells were further fixed 212 

with 1% osmium tetroxide at 4°C for 1 hour. After gradient dehydration, the cells were 213 

embedded in resin. Embedded cell sections were then observed under a transmission EM. 214 

 215 

Ethical statement 216 

The animal experimental processes were approved by the Ethnic Committee of The First 217 
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Affiliated Hospital of Chongqing Medical University (AMUWEC20210719) and conducted 218 

in strict accordance with the standard of the Guide for the Care and Use of Laboratory 219 

Animals published by the Ministry of Science and Technology of the People's Republic of 220 

China in 2006. 221 

 222 

Statistical analysis  223 

All statistical analyses were conducted using version 4.2.1 of R (R Foundation for Statistical 224 

Computing). Quantitative data in this study were analyzed using GraphPad Prism version 225 

9.5.0. Data were presented as mean ± standard deviation. Initially, tests for normality and 226 

homogeneity of variance were performed. If the data were normally distributed and the 227 

variances were homogeneous, unpaired t-tests were used to compare differences between two 228 

groups. One-way analysis of variance (ANOVA) was employed to compare differences 229 

among multiple groups, followed by Tukey's post-hoc test for pairwise comparisons. A P < 230 

0.05 was considered statistically significant, while a P < 0.01 was considered highly 231 

significant. 232 

 233 

RESULTS 234 

Activation of astrocytes and increased Rab8a expression in the spinal dorsal horn of 235 

CCI rats 236 

In our study of the sciatic nerve ligation model in rats, we conducted IHC and IF staining to 237 

investigate the potential mechanisms related to astrocytes in NPP. IHC analysis revealed a 238 

significant increase in Rab8a expression in the spinal dorsal horn of rats subjected to sciatic 239 

nerve ligation compared to controls (Figure 1A-B, P < 0.01). 240 

IF staining further explored the distribution of Rab8a in the spinal dorsal horn. GFAP (green 241 

fluorescence), a marker of astrocytes, showed a notable increase in the NPP model, indicating 242 
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the activation of astrocytes. Rab8a (red fluorescence) staining was observed in various cell 243 

types within the spinal dorsal horn, but a significant increase in Rab8a expression was 244 

evident in activated astrocytes (Figure 1C). These findings highlight the association between 245 

Rab8a expression and astrocyte activation, suggesting its potential importance in the 246 

pathophysiology of NPP. 247 

 248 

Upregulation of cytokine expression in LPS-induced activated astrocytes 249 

LPS is commonly utilized to simulate inflammatory responses, prompting a series of 250 

experiments to investigate its effects on astrocytes. Initially, we assessed the viability of 251 

astrocytes to gauge the activating effect of LPS. The results demonstrated a significant 252 

increase in the survival rate of astrocytes cultured with LPS compared to the control group 253 

(Figure 2A, P < 0.05). 254 

IF and Western blot analyses revealed a significant increase in the expression of the GFAP 255 

protein in cells treated with LPS (Figure 2B, P < 0.05). Moreover, compared to the control 256 

group, cells in the LPS group exhibited increased cell volume and shorter, thicker processes 257 

(Figure 2C). This phenomenon likely reflects the morphological changes of astrocytes under 258 

LPS treatment, further supporting their activated state. 259 

Further analysis through qPCR was conducted to measure the mRNA levels of 260 

pro-inflammatory cytokines, including TNF-α and IL-1β, in activated astrocytes. The results 261 

showed significant upregulation of TNF-α and IL-1β mRNA levels in activated astrocytes 262 

(Figure 3A-B, P < 0.001). 263 

In summary, our findings reveal the activating effects of LPS on astrocytes, including 264 

increased cell viability, elevated expression of GFAP protein, morphological changes, and the 265 

upregulation of pro-inflammatory cytokines TNF-α and IL-1β mRNA levels in activated 266 

astrocytes.  267 
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Increased vesicular transport in LPS-induced activated astrocytes 268 

To investigate changes in vesicular transport within activated astrocytes, EM was employed 269 

to examine vesicular transport. In the LPS-treated group, the Golgi apparatus was increased 270 

and enlarged, with more Golgi vesicles around the trans-Golgi network (TGN). 271 

Mitochondrial numbers were increased, showing swollen, spherical forms with reduced 272 

cristae. The quantity of vesicles in activated astrocytes was higher in the LPS group, with 273 

vesicles accumulating near the cell membrane (Figure 4A-B). 274 

Given the molecular basis of vesicle and plasma membrane fusion established by the SNARE 275 

complex [44], the co-expression of Rab8a and VAMP2 in activated astrocytes was further 276 

investigated through IF experiments. It was observed that the positive IF staining of Rab8a 277 

and VAMP2 was more aggregated in activated astrocytes. Additionally, astrocytes activated 278 

by LPS also exhibited co-localization of Rab8a and VAMP2 expression, with these proteins 279 

displaying a relatively uniform distribution across various cell types (Figure 5A). 280 

Furthermore, co-localization of Rab8a and Syntaxin16 expression was also observed in 281 

astrocytes activated by LPS. However, the distribution of the positive IF staining for Rab8a 282 

and Syntaxin16 was not entirely consistent across different activated astrocytes (Figure 5B). 283 

Western blot analysis further examined the expression levels of vesicular transport-related 284 

proteins (Rab8a, VAMP2, and Syntaxin16). The results indicated that, following LPS 285 

treatment, the levels of Rab8a, VAMP2, and Syntaxin16 proteins were significantly higher in 286 

astrocytes compared to the control group (Figure 5C-E, P < 0.05). 287 

These findings reveal increased vesicular transport in LPS-induced activated astrocytes, 288 

accompanied by upregulation of protein levels of Rab8a and SNARE. 289 

 290 

BONT/A inhibits vesicular transport in LPS-induced activated astrocytes 291 

To assess the impact of the vesicular secretion inhibitor BONT/A on vesicular transport, we 292 
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conducted Western blot experiments to detect changes in proteins related to vesicular 293 

transport (Rab8a, VAMP2, and Syntaxin16) in astrocytes activated by LPS treatment 294 

following BONT/A administration. The results indicated a significant reduction in the 295 

expression levels of Rab8a, VAMP2, and Syntaxin16 proteins in astrocytes treated with 296 

BONT/A (BTX group) compared to those treated with LPS alone (LPS group) (Figure 297 

6A-D). 298 

To gain a comprehensive understanding of BONT/A's effect, EM was used to evaluate 299 

changes in vesicular transport. The findings demonstrated that vesicular transport within 300 

astrocytes activated by LPS was significantly inhibited following BONT/A treatment, 301 

evidenced by a decrease in the number of intracellular vesicles and a marked reduction in 302 

vesicle accumulation near the cell membrane (Figure 7A-B). 303 

These results reveal the inhibitory effect of BONT/A on vesicular transport in astrocytes 304 

activated by LPS induction. 305 

 306 

DISCUSSION 307 

Our research demonstrates that injury signals drive the transformation and activation of 308 

astrocytes, leading to increased release of pain-associated bioactive molecules such as 309 

inflammatory factors, ATP, and glutamate. These molecules play roles in central and 310 

peripheral sensitization and contribute to the progression of NPP [18, 19]. Astrocyte 311 

activation is a heterogeneous process involving multiple molecular, cellular, and functional 312 

changes, including alterations in vesicular secretion [25, 54, 55, 56]. However, the specific 313 

mechanisms underlying vesicle and inflammatory mediator release remain unclear [32]. 314 

Rab8a protein and the SNARE complex are involved in vesicle-directed transport, targeting 315 

docking, and fusion with the cell membrane [43, 44, 45], but their mechanisms in NPP have 316 

yet to be confirmed. 317 
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In our study using a CCI rat model, Rab8a was highly expressed in astrocytes within the 318 

spinal dorsal horn following neural injury, suggesting increased vesicle docking and transport 319 

activity, a possible manifestation of astrocyte activation. EM revealed a significant increase in 320 

internal vesicle number and transport activity toward the plasma membrane, resulting in 321 

heightened exocytic activity. Quantitative PCR, IF, and Western blot results showed 322 

significant increases in the expression of cytokines such as TNF-α and IL-1β, as well as 323 

Rab8a, VAMP2, and Syntaxin16 in activated astrocytes. Treatment with BONT/A 324 

significantly reduced the levels of Rab8a, VAMP2, and Syntaxin16 proteins in astrocytes. 325 

Collectively, these findings suggest that the activation of the Rab8a/SNARE complex 326 

pathway is crucial for vesicular transport and bioactive molecule release in astrocytes and 327 

represents an important component in the pathogenesis of NPP. 328 

Rab8a, a small GTPase, is essential for vesicle transport in various cell types and is involved 329 

in cilia formation [57, 58]. Rab8a can interact with effectors or directly with SNARE to 330 

recognize t-SNARE on target membranes, promoting v-SNARE and t-SNARE pairing, thus 331 

guiding vesicle-directed transport and targeted docking [59, 60, 61, 62, 63, 64]. The control 332 

of vesicle transport by Rab8a may facilitate the formation of different membrane protrusions, 333 

while VAMP2 and Syntaxin16, components of the SNARE complex, are critical proteins in 334 

vesicle docking. Our results, combined with previous studies [65, 66], suggest that 335 

Rab8a-mediated enhanced transport of vesicles from the trans-Golgi network (TGN) to the 336 

plasma membrane may underpin the molecular basis for astrocyte release of bioactive 337 

molecules involved in the onset and maintenance of NPP. Enhanced vesicular transport in 338 

LPS-activated astrocyte models likely represents a crucial mechanism for the secretion of 339 

bioactive molecules by activated astrocytes, with activated pathways for cytokine synthesis 340 

and secretion contributing to disease progression. 341 

Furthermore, the application of BONT/A suggests that targeting components of the SNARE 342 



15 
 

complex can effectively reduce vesicular transport in astrocytes. Preclinical and clinical 343 

studies have reported the efficacy of BONT/A in treating central NPP. BONT/A inhibits the 344 

secretion of substance P and CGRP in DRG, suppresses the expression of TRPV1 and P2X3, 345 

and exerts central effects through retrograde axonal transport [67, 68, 69, 70]. BONT/A not 346 

only cleaves SNAP-25 at presynaptic terminals but also cleaves SNARE proteins 347 

retrogradely in growth cones and the central brain, inhibiting the exocytosis of vesicles 348 

containing norepinephrine, glutamate, substance P, and calcitonin gene-related peptide 349 

(CGRP), as well as the expression of vanilloid receptors. 350 

 351 

CONCLUSION 352 

In summary, our study reveals that the activation of the Rab8a/SNARE complex pathway and 353 

subsequent enhanced vesicle transport activity in the spinal dorsal horn following neural 354 

injury are likely critical components in the cytokine cascade reaction mechanisms of NPP 355 

(Figure 8). By elucidating the role of the Rab8a/SNARE complex in the development of NPP, 356 

this study provides important insights for understanding the molecular basis of NPP and 357 

developing new therapeutic strategies. Given the persistent activation of astrocytes under 358 

chronic pain conditions and their recognized role in NPP, directing therapeutic interventions 359 

towards reactive astrocytes holds significant potential. Our research demonstrates the critical 360 

role of these proteins in astrocytes and emphasizes the importance of vesicle transport in 361 

regulating NPP, offering new potential targets for NPP treatment. Targeting the 362 

Rab8a/SNARE complex pathway could be an effective strategy for alleviating or treating 363 

NPP. Based on our current understanding of astrocyte-mediated NPP, considering targeting 364 

related signaling pathways, hemichannels, or purinergic receptors to inhibit the release of 365 

neuroglial mediators, such as by inhibiting the expression or function of Rab8a to reduce the 366 

release of inflammatory mediators, could provide valuable directions for developing novel 367 
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NPP therapeutic drugs. Additionally, targeting downstream mediators released by astrocytes, 368 

such as chemokines and cytokine signaling, is a viable treatment strategy. Given that 369 

astrocyte dysregulation is a common feature of nearly all chronic pain pathologies, and the 370 

activation of astrocytes remains strong throughout persistent pain conditions, whether 371 

targeting the activation of astrocytes or preventing their transition to a pro-inflammatory state 372 

without affecting their normal homeostatic functions remains a significant challenge.  373 

Although this study provides important insights into the role of the Rab8a/SNARE complex 374 

in NPP, it has limitations. Firstly, the study is primarily based on animal models and cell 375 

experiments, and its results need further validation in humans. Secondly, although BONT/A 376 

can inhibit vesicular transport in astrocytes, its specific mechanisms of action and long-term 377 

effects require further investigation. Additionally, this study did not fully resolve all potential 378 

molecular mechanisms of the Rab8a/SNARE complex pathway in the pathogenesis of NPP, 379 

necessitating further research to elucidate these mechanisms. Future research should focus on 380 

several key areas. Firstly, the findings of this study need to be validated in a broader range of 381 

biological models and explored through clinical studies to assess their potential application in 382 

human NPP treatment. Secondly, specific intervention methods targeting the Rab8a/SNARE 383 

complex pathway, including small molecule inhibitors, and RNA interference techniques, 384 

should be explored to develop new treatment strategies. Additionally, investigating the role of 385 

the Rab8a/SNARE complex in other cell types beyond astrocytes, such as neurons and 386 

microglia, may reveal more complex pathological mechanisms of NPP. 387 
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 645 

TABLES AND FIGURES WITH LEGENDS 646 

 647 

Figure 1. Activation of astrocytes and Rab8a expression in the spinal dorsal horn of CCI 648 

rats. (A) IHC staining of Rab8a in the spinal dorsal horn of CCI rats; (B) Quantitative 649 

analysis of Rab8a protein in the spinal dorsal horn of CCI rats; (C) IF staining in the spinal 650 

dorsal horn of CCI rats, showing GFAP-positive cells (green fluorescence) and the 651 

distribution of Rab8a (red fluorescence). **P < 0.01. CCI: Chronic constriction injury; IHC: 652 

Immunohistochemistry; GFAP: Glial fibrillary acidic protein. 653 
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 654 

Figure 2. The effects of LPS on astrocytes. (A) The survival rate of astrocytes post-LPS 655 

treatment; (B) GFAP protein expression in astrocytes post-LPS treatment detected by Western 656 

blot; (C) IF staining of astrocytes post-LPS treatment, showing GFAP-positive cells (green 657 

fluorescence) and morphological changes. *P < 0.05. GFAP: Glial fibrillary acidic protein; 658 

LPS: Lipopolysaccharide; IF: Immunofluorescence. 659 

 660 
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 661 

Figure 3. Expression of cytokines in activated astrocytes. (A) qPCR detection of TNF-α 662 

mRNA levels in astrocytes post-LPS treatment; (B) qPCR detection of IL-1β mRNA levels in 663 

astrocytes post-LPS treatment. ***P < 0.001. LPS: Lipopolysaccharide. 664 

 665 

 666 

Figure 4. Changes in vesicular transport in activated astrocytes. (A) EM observation of 667 

vesicular transport in astrocytes post-LPS treatment; (B) Statistical graph of vesicular 668 

transport quantity in astrocytes post-LPS treatment. ***P < 0.001. EM: Electron microscopy; 669 

LPS: Lipopolysaccharide. 670 

 671 
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 672 

Figure 5. Levels of vesicular transport-related proteins in activated astrocytes. (A-B) IF 673 

staining of VAMP2 and Syntaxin16 in astrocytes post-LPS treatment; (C-E) Western blot 674 

detection of Rab8a and SNARE proteins (VAMP2 and Syntaxin16) levels in astrocytes 675 

post-LPS treatment. *P < 0.05, **P < 0.01. IF: Immunofluorescence; VAMP2: 676 

Vesicle-associated membrane protein; SNARE: Soluble N-ethylmaleimide-sensitive factor 677 

attachment protein receptor. 678 

 679 
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 680 

Figure 6. Effects of BONT/A on vesicular transport-related proteins in activated 681 

astrocytes. (A) Western blot detection of Rab8a, VAMP2, and Syntaxin16 protein expression 682 

in activated astrocytes post-BONT/A treatment; (B-D) Quantitative analysis of Rab8a, 683 

VAMP2, and Syntaxin16 proteins in activated astrocytes post-BONT/A treatment. *P < 0.05, 684 

**P < 0.01, ***P < 0.001. BONT/A: Botulinum neurotoxin type A. 685 

 686 

 687 

Figure 7. Effects of BONT/A on vesicular transport in activated astrocytes. (A) EM 688 

observation of vesicular transport in activated astrocytes post-BONT/A treatment; (B) 689 

Statistical analysis of vesicular transport quantity in activated astrocytes post-BONT/A 690 

treatment. **P < 0.01. BONT/A: Botulinum neurotoxin type A; EM: Electron microscopy. 691 
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 692 

Figure 8. Activated Rab8a/SNARE complex drives the molecular mechanism of NPP by 693 

promoting vesicle anchoring and transportation in spinal astrocytes. NPP: Neuropathic 694 

pain. 695 


