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R E V I E W

Progress of lymphocyte activation gene 3 and
programmed cell death protein 1 antibodies
for cancer treatment: A review
Yu-Quan Li1, Xue-Mei Chen1, Gui-Fei Si1, and Xue-Min Yuan2∗

The application of immune checkpoint inhibitors (ICIs) has proven to be an effective treatment for cancer. Immune checkpoints, such as
programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), T-cell immunoglobulin-3 (TIM-3), T-cell immunoglobulin and ITIM domain (TIGIT), and lymphocyte activation gene 3 (LAG-3)
have received extensive attention, and the efficacy of antibodies or inhibitors against these checkpoints (either alone or in
combination) has been evaluated in many tumors. This paper provides a brief overview of the PD-1 and LAG-3 checkpoints and then
shifts focus to the combined use of PD-1 and LAG-3 antibodies in both in vivo and in vitro experiments. In the in vitro experiments, we
examined the correlation between the expression and activation of these inhibitors on T cells, and also assessed toxicity in animals in
preparation for in vivo experiments. The effects of the combined use of PD-1 and LAG-3 antibodies were then summarized in animal
models of melanoma, MC38 carcinoma, and other tumors. In clinical studies, the combined application of these antibodies was assessed
in patients with melanoma, colorectal, breast, and renal cell cancers, as well as other solid tumors. In general, the combination of PD-1
and LAG-3 antibodies has shown promising results in both in vivo and in vitro studies.
Keywords: Immunotherapy, programmed cell death protein 1 (PD-1), programmed cell death protein 1 ligand 1 (PD-L1),
lymphocyte activation gene 3 (LAG-3), combination therapy.

Introduction
Treating cancer has long been a challenging task for humans.
Advances in surgeries, radiotherapy, and chemotherapy have
led to improved outcomes for many cancer patients. However,
those with advanced cancer continue to face a poor prognosis.
As our understanding of the immune system has deepened,
researchers have explored using immune cells to target and
eliminate cancer. This has sparked significant interest in tumor
immunotherapy [1]. One of the key research areas is immune
checkpoints, such as programmed cell death protein 1 (PD-1),
programmed cell death protein 1 ligand 1 (PD-L1), cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte acti-
vation gene-3 (LAG-3), T-cell immunoglobulin-3 (TIM-3), and
T-cell immunoglobulin and ITIM domain (TIGIT) [2]. After a
large number of studies and trials were conducted, antibod-
ies against these immune checkpoints have been progressively
developed, such as nivolumab, pembrolizumab, and ipili-
mumab, among other antibodies [1, 3], and these antibodies
have achieved good results. However, there are still a consid-
erable number of patients with a low response rate or serious
adverse events (AEs) [1].

To enhance treatment efficacy, researchers have intro-
duced immune-based combination therapy, which involves

combining immunotherapy with chemotherapy or tyrosine
kinase inhibitors (TKIs) [4]. For example, some researchers
treat renal cell carcinoma (RCC) with immune checkpoint
inhibitors (ICIs) plus TKIs [5], while breast cancer is treated
with ICIs plus ladiratuzumab (targeting LIV-1) [6]. More-
over, immune-based combinations or ICI monotherapy are
being explored as adjuvant treatment for hepatocellular carci-
noma (HCC) [7]. However, immune-based combination ther-
apy is also thought to be associated with some AE, especially
hypertransaminasemia [8]. Another option is to combine two
different ICIs. Among them, the most concerning treatments are
the combination of PD-1 and CTLA-4, and PD-1 and LAG-3 [1, 9].
The combined application of PD-1 and CTLA-4 antibodies was
initiated at an early stage and has been widely used in clinical
practice with a profound lasting response rate and controllable
AEs, which has significantly changed the treatment of advanced
cancer [1]. However, there are still many patients who can-
not benefit from this treatment; thus, clinical personnel have
begun to utilize other combination treatments, such as PD-
1/PD-L1 and LAG-3 [10]. The combination of PD-1/PD-L1 and
LAG-3 has been applied by many scholars in the clinical setting,
including applications with many types of tumors. This paper
analyzes and discusses the combined application of PD-1/PD-L1
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Figure 1. Immunomodulatory effects of LAG-3 and PD-1. After LAG-3 binds to MHC class II, FGL-1, LSECtin, and galectin-3, or when PD-1 binds to
PD-L1/L2, inhibitory signals are transmitted to T cells, thus leading to the inhibition of effector T-cell function and T-cell exhaustion. FGL-1: Fibrinogen-like
protein 1; LSECtin: Liver sinusoidal endothelial cell lectin; sLAG-3: The soluble form of LAG-3; MHC II: Major histocompatibility complex class II; APC: Antigen
presenting cell; TCR: T-cell receptor; LAG-3: Lymphocyte activation gene 3; PD-1: Programmed cell death protein 1.

and LAG-3. First, this review introduces the basic function of
PD-1 and LAG-3; additionally, when considering the fact that
there is much literature in this field, this paper will provide
a brief summary of these concepts and subsequently focus on
the preclinical and clinical applications of the combination of
PD-1/PD-L1 and LAG-3.

Programmed cell death protein 1 (PD-1)
PD-1 (PDCD1 and CD279) is a common cell surface receptor
found in B cells, T cells, and natural killer (NK) cells [1]. Stud-
ies on PD-1 have mainly focused on T cells, with less research
being conducted on B cells or NK cells. It is a transiently
expressed gene that was discovered by Professor Tasuko Honjo
and his colleagues [11]. Among other emerging negative regula-
tory receptors that mediate these inhibitory feedbacks, PD-1 has
become one of the most studied regulatory factors, due to its
indispensable role in fine-tuning T-cell function and maintain-
ing the dynamic balance of the immune system [12]. The ligands
for PD-1, such as PD-L1 and PD-L2, are commonly expressed
in dendritic cells (DCs) and macrophages [13, 14]. Specifically,
PD-L1 is expressed on B cells, DCs, macrophages, cultured bone-
marrow-derived mast cells, T cells, and non-hematopoietic
cell types. In contrast, PD-L2 is inducibly expressed only on
DCs, macrophages, and bone-marrow-derived cultured mast
cells [15]. When PD-1 binds to its ligands, it inhibits the cell pro-
liferation, cytokine secretion, and cytotoxicity of immune cells,
thus weakening the immune response (Figure 1) [16]. After PD-1
activation, SHP1 and SHP2 phosphatases, which inhibit ZAP70
and PI3K activity, are recruited and then downstream ERK
and PKCθ intracellular pathways are also terminated. It can
also decrease CK2 expression and activity through the PI3K-
dependent signaling pathway, resulting in the elimination of
PIP3 by active PTEN and thus shut off AKT activation. These
will inhibit the activity of T cells [17–20]. Some researchers
investigated that ligation of PD-L1 or PD-L2 can lead to reverse
signaling into the DC that ultimately results in the inhibition

of the ensuing immune response, as PD-L1 and PD-L2 might
bidirectionally regulate DC–T cell interactions [15, 21]. In addi-
tion to being expressed by conventional T cells, PD-1 is also
expressed by some myeloid cell populations and tumor cells, in
which we have limited knowledge of its role. In recent years,
researchers investigated that anti-PD-1 might regulate myeloid
response for antitumor immunity involving a shift in myeloid
cell fate away from immature myeloid-derived suppressor cells
(MDSCs) and toward differentiated monocytes, macrophages,
and DCs [22]. And in tumor cells, the coordination of PD-1
and PD-L1 activates its major downstream signaling pathways
including the AKT and ERK1/2 pathways, thus enhancing tumor
cell growth [23]. In addition, sPD-1 and sPD-L1 are the solu-
ble counterparts of PD-1 and PD-L1, and studies have shown
that sPD-1 could bind PD-L1 and PD-L2 to block PD-1/PD-L1
interaction [24]. Several monoclonal antibodies targeting PD-1
(pembrolizumab, nivolumab, and cemiplimab) or PD-L1 (dur-
valumab, atezolizumab, and avelumab) for the treatment of
hematological and solid malignancies have been approved by
the Food and Drug Administration (FDA) [3], including treat-
ments for metastatic melanoma, RCC, metastatic nonsmall cell
lung cancer (NSCLC), classical Hodgkin’s lymphoma, metastatic
urothelial carcinoma, and HCC [1]. The current research is
mainly on PD-1/PD-L1 antibodies, however, PD-L2 is also an
advanced candidate. Though some studies have found a greater
effect of anti-PD-L1 blockade compared with anti-PD-L2 block-
ade, more research is also needed to assess anti-PD-L2 blockade
value [21].

In addition, PD-L1 is a biomarker of response to
immune-checkpoint inhibitors. In most scenarios, only
20%–40% of patients will respond to anti-PD-1/PD-L1 [25].
Multiple studies across many cancers have provided solid
evidence about a positive correlation between PD-L1 expression
and response to immunotherapy, so PD-L1 can be the biomarker
to identify groups of patients who will benefit from these
agents [25, 26]. The FDA-approved PD-L1 assays are classified
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as either “companion” or “complementary” diagnostics [25].
PD-L1 expression can be detected using immunohistochemistry
(IHC) [27], however, due to the unique IHC assays and interpre-
tations for each ICI and various preanalytical issues common
for all IHC assays, PD-L1 testing and interpretation are not easy
to perform [26].

Lymphocyte activation gene 3 (LAG-3)
LAG-3 (CD223) is a molecule that is upregulated on acti-
vated CD4+ and CD8+ T cells and a subset of NK cells
and was initially discovered by Triebel et al. in 1990 [28].
The LAG-3 gene is located near CD4 on chromosome 12 in
humans [29]. Early studies suggested that LAG-3 defined a
specific mode of natural killing on NK cells [30, 31]. Follow-
ing T-cell receptor (TCR) stimulation, LAG-3 (which is stored
in lysosomal compartments) translocates to the cell surface to
control T-cell responses [32, 33], and it is also regulated by
proteolytic cleavage, thus leading to the shedding of a soluble
form of LAG-3 (sLAG-3) [34, 35]. Some researchers proposed
that sLAG-3 may function similarly to a synthetic LAG-3 fusion
protein (sLAG-3-Ig) to bind to MHCII, thus inhibiting the bind-
ing of LAG-3 and its inhibitory function [36, 37]. LAG-3 struc-
turally resembles the CD4 coreceptor but binds to MHC class
II with a higher affinity [38]. Moreover, LAG-3 ligands include
MHC class II, alternative ligands, and other ligands, such as
galectin-3 (Gal-3) and fibrinogen-like protein 1 (FGL-1) [29, 35].
When LAG-3 binds to its ligands, it negatively regulates the
activation, proliferation, homeostasis, and effector functions of
CD4+ and CD8+ T cells (Figure 1) [39]. One putative mecha-
nism of action is that LAG-3 colocalization with the immune
synapse exerts its function [36]. And LAG-3 mainly negatively
regulates T-cell activation in three ways. First, negative regula-
tion directly inhibits the activation and proliferation of T cells.
Second, the T-cell immune response is suppressed by indirectly
promoting the inhibitory function of regulatory T cells. Third,
T-cell activation is prevented by regulating antigen-presenting
cells (APCs) [39]. LAG-3 expresses also on plasmacytoid DCs
(pDCs), LAG-3+ pDC represents 6% of total circulating pDCs,
and Lag-3 is a negative regulator of pDC activation [40, 41].
There are a large number of LAG-3-targeted drugs under-
going clinical trials, such as relatlimab, eftilamidol alpha,
LAG525, BI754111, TSR-033, and REGN3767, including treat-
ments for melanoma, mesothelioma, breast cancer, lymphoma,
myeloma, and leukemia, among other cancers [42, 43]. Current
LAG-3-targeted therapies can be categorized into three sub-
types: anti-LAG-3 monoclonal antibodies (relatlimab, Sym022,
IMP701, MK-4280, and TSR-033), LAG-3-immunoglobulin (Ig)
fusion proteins (IMP321), and LAG-3 bispecifics (IBI323, FS118,
EMB-02, and MGD013) [43].

PD-1 and LAG-3 expression correlation analysis and effect
testing
There are a considerable number of preclinical studies demon-
strating the possibility of this combination regimen. The strik-
ing synergy between PD-1 and LAG-3 has been observed in
multiple settings [29].

A previous study investigating small cell lung cancer (SCLC)
suggests that LAG-3 expression was markedly associated with
PD-1 and PD-L1 expression (both P < 0.05) with 81 clin-
ical SCLC samples [44]. The combination with PD-1 block-
ade demonstrated promising results, as immunotherapy with
antibody-mediated blockade of LAG-3 alone shows limited effi-
cacy in models of chronic viral infection and cancer, and the
dual blockade of PD-1/LAG-3 synergistically reduced viral load
by countering CD8+ T-cell exhaustion in chronic lympho-
cytic choriomeningitis virus infection, thus improving antiviral
CD8+ T-cell responses [45]. One study described the binding
properties of an anti-human PD-1 antibody and an anti-human
LAG-3 antibody [46]. In this vitro model of antigen-experienced
memory T cells expressing PD-1 and LAG-3, IFN-γ secretion
was increased on average by 13.2 times vs isotype control
(P < 0.0001) with BI754111 (anti-LAG-3) plus ezabenlimab
(anti-PD-1), which was significantly more than BI754111 or
ezabenlimab monotherapy, thus supporting the clinical investi-
gation of this combination (NCT03156114; NCT03433898) [46].
In an in vitro functional analysis of allogeneic T cells, the combi-
nation of REGN3767 (anti-LAG-3) with cemiplimab (REGN2810,
anti-PD-1) increased T-cell activation, the proportion of effector
T cells in the tumor and intratumoral CD4+ and CD8+ T cells
producing IFN-γ, TNF-α, and IL-10 levels in the blood and spleen
to reduce tumor growth [47]. In addition, LAG-3 is regarded as
a marker found in PD-1-resistant patients, and anti-LAG-3 anti-
bodies improved antitumor activity in these patients [48–50].

Toxicities and safety
Immunotherapy can form immune memory, and some patients
can achieve long-term remission. But there are AEs that can
manifest as autoimmune phenomena and affect any organ, such
as arthritis, colitis, hepatitis, or endocrine diseases. And the AEs
of different ICIs are somewhat different [51].

The side effects and immune-related AEs (IrAEs) associ-
ated with PD-1 blockade mainly include interstitial pneumoni-
tis, colitis with gastrointestinal perforation, type 1 diabetes,
severe skin reactions, and immune thrombocytopenia, but they
are generally considered to be well tolerated and manageable
compared with the toxicity profile of CTLA-4 inhibitors and
chemotherapy [12, 52].

When anti-PD-1 antibody (nivolumab) and anti-CTLA4 anti-
body (ipilimumab) are used together to treat cancer, the com-
bination induced a high response rate with deeper responses
than either antibody alone; at the same time, there were higher
rates of immune-related toxicities than would be expected with
either agent alone [53, 54]. The combination of anti-LAG3 and
anti-PD-1 also had a higher rate of treatment-related toxicities
than nivolumab alone, but the difference in toxicities between
combination therapy and anti-PD-1 monotherapy appeared to
be smaller than that between combined anti-PD-1 and anti-
CTLA4 and monotherapy [53, 55].

The safety of anti-PD-1/LAG-3 combination has been
assessed and demonstrated that 8 of 9 cynomolgus mon-
keys were generally well tolerated with no adverse clinical
symptoms when coadministered relatlimab at 100 mg/kg and
nivolumab at 50 mg/kg in a preclinical toxicity evaluation,
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but one male monkey died due to central nervous system
(CNS) vasculitis [56]. Moreover, ABL501, which is a bispecific
antibody targeting LAG-3 and PD-L1, effectively enhanced the
activation of effector CD4+ and CD8+ T cells to a greater extent
than a combination of single anti-LAG-3 and anti-PD-L1; in
addition, the safety of ABL501 was also assessed and was well
tolerated in cynomolgus monkeys [57].

Preclinical evidence
Melanoma and mesothelioma
In a sensitive in vitro model based on expanded autologous
tumor-infiltrating lymphocytes (TILs) and melanoma cell
lines obtained from tumor specimens of melanoma patients,
LAG-3 and PD-1+LAG-3 inhibition promoted antitumor
immune responses in human autologous melanoma/T-cell
cocultures [58]. Researchers developed a mouse melanoma
model in which the initial regression of advanced disease was
followed by tumor recurrence, and the combination blockade
of the inhibitory molecules PD-L1 and LAG-3 effectively treated
recurrent melanoma [59].

In a mesothelioma mouse model, Marcq et al. [60] found
that monotherapy with an immune checkpoint blocking anti-
body against PD-1 and its combination with another blocking
antibody against LAG-3 resulted in delayed tumor growth and
survival benefits in experimental mice.

MC38 carcinoma or Sa1N fibrosarcoma, other colon cancers,
and ovarian cancer
In Turnis’ study, over 75% of mice with MC38 cancer or
Sa1N fibrosarcoma were effectively treated with a combina-
tion of anti-PD-1 and anti-LAG-3 antibodies, resulting in com-
plete clearance of tumors and prolonged survival [61]. Another
study utilized three different mouse colon cancer cell lines:
MC38, MC38.OVA (engineered to express ovalbumin), and
CT26. Treatment with the anti-LAG-3/PD-L1 mAb2 (bispecific
antibody) eliminated tumors in six of eight mice and slowed
tumor growth in the remaining two mice [62]. Furthermore,
CB213 is a novel asymmetric bispecific antibody that blocks
signaling through LAG-3 and PD-1 and inhibits tumor growth
in MC38 models [63]. In a prophylactic MC38 ovarian tumor
model treated with cemiplimab (anti-PD-1) and REGN3767
(anti-LAG-3), more mice were tumor-free, and tumor growth
was significantly reduced on day 22, in the combination
treatment group compared with the same-type control group
(P < 0.05) and the REGN3767 group (P < 0.01) [47].

In addition, the anti-LAG-3/PD-L1 mAb2 was also used to
reduce tumor burden in the MC38 colon cancer model, and
there were more tumor-free animals in the LAG-3/PD-L1 bis-
pecific group than in the combined anti-LAG-3 and anti-PD-
L1 groups, which was similar to the CT26 mouse colon cancer
model [64]. In the ovarian cancer model, the results sug-
gested that the inhibition of the PD-1 or LAG-3 pathways
alone was insufficient to control ovarian cancer, whereas the
combined blockade with anti-LAG-3 and anti-PD-1 antibodies
significantly delayed the growth of IE9mp1 ovarian tumors
(P = 0.01) [65].

Non-small cell lung cancer (NSCLC), breast cancer, chronic
lymphocytic leukemia (CLL), glioblastoma, pancreatic cancer,
and prostate cancer
In a previous study, a humanized mouse model of NSCLC was
established, which was administered twice weekly with the
combination of mouse anti-PD-1 (TSR-042) and anti-LAG-3
(TSR-033); additionally, when tumor growth was monitored
for 35 days, this model showed significant synergy and the
elimination of tumor growth in most implanted mice (tumor
growth inhibition [TGI] effect was 97%; coefficient of drug inter-
action [CDI] < 0.7), as well as significant increases in prolif-
erating T cells and total CD8+ T cells in the spleen [66]. In
another mouse model of triple-negative breast cancer (TNBC),
tumor growth was significantly inhibited in the LAG-3 and PD-1
double-blocking mice, and the final tumor volume or weight
was also significantly smaller in this group than in the PD-1 or
LAG-3 single-blocking group (P < 0.05) and PBS control group
(P < 0.001) after 28 days of treatment and observation [67].

In the CLL mouse model, dual anti-PD-1/LAG-3 therapy
reduced the percentage and number of CLL cells in both the
blood and spleen, thus effectively reducing the tumor burden
in CLL-infected animals, which represented an effective treat-
ment for restoring a functional antitumor immune response.
In addition, single anti-PD-1, single anti-LAG-3, single anti-
KLRG1 (killer cell lectin-like receptor subfamily G member
1 antibody), and double anti-PD-1/KLRG1 resulted in little
or no improvements in CLL progression [68]. Furthermore,
Harris-Bookman et al. evaluated the efficacy of combination
therapy of anti-LAG-3 (C9B7W, IgG1) and anti-PD-1 monoclonal
antibodies in glioblastoma. They found that when compared to
no treatment group mice, the combination therapy significantly
affected survival (P = 0.03); moreover, there was a clinical trial
involving the combination of anti-LAG-3 and anti-PD-1 in the
treatment of glioblastoma (NCT02658981) [69].

US2018326054 described six bispecific antibodies against
PD-1/LAG-3 (and their application in the treatment of pan-
creatic cancer) that were internalized by CD4+ T cells to
enhance effector function (involving the release of granzyme B
and INF). They found that bispecific antibody therapy against
mice inoculated with pancreatic cancer cells resulted in tumor
inhibition [70]. Mice with prostate cancer that were immunized
with DNA vaccines were treated with either αPD-1, αLAG-3,
αPD-1/αLAG-3, or IgG control, and all of the vaccine combina-
tions slowed tumor growth when compared to vaccines with
IgG; however, the combination of αPD-1/αLAG-3 with the vac-
cine resulted in a significant reduction in cancer growth when
compared to the administration of either antibody alone [71].

Clinical evidence
Melanoma
In a phase 2–3 trial, researchers evaluated relatlimab (anti-
LAG-3) and nivolumab (anti-PD-1) as a fixed-dose combination
in patients with previously untreated metastatic or unre-
sectable melanoma. The median progression-free survival with
relatlimab–nivolumab was longer than that with monotherapy,
whereas treatment-related AEs (TRAEs) occurred less
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Figure 2. Clinical evidence of immune checkpoint inhibitors (ICIs). ICIs were studied in many clinical settings. Tebotelimab is used in gastric cancer and
other solid and hematological malignancies. Avelumab and eftilagimod alpha are used in gastric cancer, gallbladder cancer and colon cancer. Pembrolizumab
plus eftilagimod alpha or nivolumab plus relatlimab are used in melanoma. BI754091 and BI754111 are used in colon cancer. FS118 is used in anaplastic thyroid
cancer. Spartalizumab and ieramilimab are used in breast cancer, non-small cell lung cancer, colorectal cancer, cutaneous melanoma, and metastatic renal
cell cancer.

frequently with combination therapy [72]. Moreover, 30
patients with resectable clinical stage III melanoma were also
treated with neoadjuvant therapy and nivolumab + relatlimab
and achieved a high pathologic complete response with a
favorable toxicity profile (NCT02519322) [73]. And a phase I/IIa,
open-label RELATIVITY-020 trial part D assessed the efficacy
and safety of nivolumab and relatlimab in advanced melanoma,
including five hundred eighteen patients (D1 = 354; D2 = 164).
The median PFS was 2.1 months (95% CI, 1.9–3.5) in D1 and
3.2 months (95% CI, 1.9–3.6) in D2, and the grade 3–4 TRAE
incidence was 15.0% in D1 and 12.8% in D2, which indicates
nivolumab and relatlimab had a manageable safety profile and
demonstrated durable clinical activity in these patients [74].

In another study, fianlimab (REGN3767, anti-LAG-3)
and cemiplimab (anti-PD-1) were assessed in patients with
melanoma and showed an acceptable safety profile and some
clinical activity (NCT03005782) [75].

A previous study that was divided into Part A (dose escala-
tion) and Part B (extension) evaluated the safety, tolerability,
pharmacokinetics, and pharmacodynamics of the combina-
tion of eftilamidol alpha (efti, anti-LAG-3) and pembrolizumab
(anti-PD-1) in patients with melanoma, and the overall response
rate (ORR) was 33% in patients in Part A and 50% in patients
in Part B. It was concluded that the combination of efti
and pembrolizumab was well tolerated and had good anti-
tumor activity [76]. The majority of patients (83%) treated
with efti and pembrolizumab had visceral disease, whereas
none of the severe AEs was related to the study treatment
(NCT02676869) [77].

In addition, on March 18, 2022, the FDA approved
nivolumab and relatlimab-rmbw (Opdualag, Bristol-Myers

Squibb Company) for adults and pediatric patients 12 years of
age or older with unresectable or metastatic melanoma [78].

Digestive system cancers and pleural mesothelioma
In patients with unresectable metastatic/locally advanced
gastroesophageal junction adenocarcinoma (GEA), the
simultaneous targeting of HER2 and PD-1 (margetuximab + reti-
fanlimab) or HER2 and PD-1/LAG-3 (margetuximab + tebotele-
limab) resulted in the opportunity to enhance the antitumor
response compared to treatment with either agent alone, and
currently available data for the coadministration of marge-
tuximab with either retifanlimab or tebotelimab suggested a
well-tolerated potential for synergistic antitumor activity, thus
supporting the mahogany assay in patients with GEA [79].

In a phase I trial (NCT03156114) that evaluated the com-
bination of BI754111 (anti-LAG-3) and BI754091 (anti-PD-1) in
patients with microsatellite stable metastatic colorectal cancer
(MSS mCRC), 40 patients with MSS mCRC received combina-
tion therapy, three patients had confirmed progressive disease
(PD), 11 patients had stable disease (SD), and 5 patients (12.5%)
had AEs leading to discontinuation of treatment [80]. In another
study, 6 of 8 patients were treated with avelumab and IMP321
for different tumor indications (gastric cancer, gallbladder can-
cer, colon cancer, and pleural mesothelioma), and treatment
with 800-mg avelumab in combination with 6-mg IMP321 was
safe and well tolerated [81].

Other tumors
PD-1 and LAG-3 have also been researched in other tumors.
Five patients with TNBC participated in phase I/II clinical
trial of anti-LAG3 LAG525 in combination with or without
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Table 1. Results of major preclinical studies of PD-1/LAG-3 inhibitors in vivo

Tumor type Antibodies Animal model Immune response Results/Conclusions Ref.

Melanoma Anti-PD-L1 (10F.9G2),
anti-LAG-3 (C9B7W)

Tyrp1B-wRAG-/-
Foxp3-DTR
TRP-1–specific CD4+
TCR transgenic mice

Tumor-specific Treg-mediated
suppression and chronic exhaustion could
be overcome with combination treatment

Simultaneous blockade of
PD-L1 and LAG-3 in vivo
treated recurring tumors

[59]

Mesothelioma Anti-PD-L1 (10F.92G),
anti-LAG-3 (C9B7W)

AB1-HA BALB/cJ
mesothelioma mice

Increased secretion of IFNγ, granzyme B
and L-2

Survival benefit at the
Kaplan–Meier curve

[60]

MC38 cancer,
Sa1N
fibrosarcoma,
B16 tumors

Anti-PD-1 (4H2),
anti-mouse LAG-3
(C9B7W)

Lag3-/-, Pdcd1-/- and
Lag3-/- Pdcd1-/- mice

Higher percentage of IFNγ+ CD8p+
T cells were found, antitumor immunity
was enhanced in MC38 cancer and Sa1N
fibrosarcoma, but was not effective
against established B16 tumors

Mice survived for long time
periods

[92]

Colon cancer mLAG-3/PDL1 mAb2 C57BL/6 mice or
Balb/c mice

Enhancing the antitumor immune
response

Inhibited tumor growth in vivo [62]

Colon cancer CB213 Transgenic hPD1/
hLAG3 HuGEMM
mice

Significant levels of tumor-infiltrating
lymphocytes were observed

64% tumor growth inhibition
(TGI)

[63]

Colon cancer REGN3767, cemiplimab Human PD-1xLAG-3
knock-in mice

The secretion of proinflammatory
cytokines by tumor-specific T cells was
enhanced

Showed increased efficacy in a
mouse tumor model

[47]

Non-small
cell lung
cancer

TSR-042, TSR-033 HuNOG-EXL mice Combination treatment increased T cell
proliferation, IFNγ production, and
elicited durable immunological memory

Impeded tumor growth to a
greater extent compared to
either monotherapy

[66]

Breast cancer NE-purified anti-mouse
PD-1 antibodies,
purified NA/LE
anti-mouse LAG-3
antibodies

Female BALB/c mice Dual blockade of LAG-3 and PD-1 could
induce a stronger antitumor effect

Significantly inhibited tumor
growth in mice

[67]

Glioblastoma Anti-murine
PD-1 monoclonal
antibody, anti-LAG-3
(C9B7W)

Female C57BL/6J
mice

The percentage of CD8 or CD4 IFNγ

producing cells (T effector cells) was not
significantly different across groups
although the combination trended
toward higher percentage of effector cells

Inhibition of LAG-3 improved
survival in a preclinical
glioblastoma model and
considerably improved the
efficacy of anti-PD-1 treatment

[69]

LAG-3: Lymphocyte activation gene 3; PD-1: Programmed cell death protein 1; INFγ: Interferon gamma; Treg: Regulatory T cells.

anti-PD-1 spartalizumab in advanced malignancies. Two of
these patients showed objective responses with a tendency
to convert an immune-cold into an immunoactive biomarker
on tumor biopsies, and another early targeting strategy for
LAG-3 involved the bispecific monoclonal antibody tebote-
limab (MGD013), which cotargeted LAG-3 and PD-1 [82–84].
In a study of RCC, the results indicated that PD-1/LAG-3
(rather than PD-1/TIM-3 blockade) improved the immune
function of stimulated RCC TILs (P = 0.0302, Fisher’s exact
test) [85].

In another previous study, the researchers presented a case
of a patient with anaplastic thyroid cancer (ATC) who pro-
gressed under multiple treatment regimens with a sustained
and durable response to FS118 (bispecific anti-PD-L1 and anti-
LAG-3); the treatment was consistently well tolerated, and
the patient had persistent disease and clinical benefit [86].
In phase I/II, multicenter study (NCT02460224), more than
200 patients with several tumor types (NSCLC, colorectal can-
cer, cutaneous melanoma, metastatic RCC.) were treated with
ieramilimab (LAG525, anti-LAG-3) in combination with or

without spartalizumab (PDR001, anti-PD-1), and this combined
application was well tolerated as monotherapy with obvious
clinical benefits [87, 88].

In a previous study, researchers studied the safety, tolera-
bility, dose-limiting toxicity, maximum tolerated dose (MTD),
and antitumor activity of MGD013 (which is an experimental
bispecific molecule designed to bind PD-1 and LAG-3) in patients
with advanced solid and hematological malignancies, and
MGD013 synergistically blocked PD-1 and LAG-3 with accept-
able safety and preliminary evidence of antitumor activity [84].
In another study, 17 diffuse large B-cell lymphoma (DLBCL)
patients also received MGD013, and serum IFN-γ was signifi-
cantly increased > 140-fold above baseline, as well as associated
lytic markers (i.e., perforin and granzyme B) [89]. When 42
patients with advanced malignancies were given REGN3767 and
cemiplimab, the safety profile was generally tolerable, and early
efficacy signals were detected [90]. In a phase II study that was
conducted in patients with solid or hematologic malignances,
patients received spartalizumab + LAG525, and the com-
bined therapy showed promising activity in neuroendocrine
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Table 2. Results of major clinical studies of PD-1/LAG-3 inhibitors for tumor treatment

Tumor type Drug(s) Trial phase N Main objectives Results/Conclusions Clinical trial Ref.

Melanoma Nivolumab+relatlimab Phase II/III 714 Median PFS PFS: 10.1 months (95% CI,
6.4–15.7)

NCT03470922 [72]

Melanoma Nivolumab+relatlimab Phase II 53 pCR rate pCR rate: 59% NCT02519322 [73]

Melanoma Pembrolizumab+
eftilagimod alpha

Phase I 24 Safety, tolerability, PK and PD ORR of part A: 33%; ORR
of part B: 50%

NCT02676869 [76]

Gastric/
gastroesophageal
junction
adenocarcinoma

Tebotelimab Phase II/III 82 ORR, overall survival and
safety/tolerability

There was potential
synergic antitumor
activity with good
tolerability

NCT04082364 [79]

Colorectal
cancer

BI754091+BI754111 Phase I 172 Evaluating the combination of
BI 754111 and BI 754091 in
patients with advanced solid
tumors

CR: 0%; PR: 7.5% NCT03156114 [80]

Thyroid cancer FS118 Phase I/II 80 Case report FS118 afforded patient a
sustained partial
response with excellent
tolerability

NCT03440437 [86]

Solid tumors Avelumab+eftilagimod
alpha

Phase I 45 Feasibility and safety Combination treatment
was safe and well
tolerated

NCT03252938 [81]

Solid or
hematologic
malignances

Spartalizumab+
ieramilimab

Phase II 76 Preliminary efficacy Combination treatment
showed promising
activity

NCT03365791 [91]

Advanced
malignancies

Spartalizumab+
ieramilimab

Phase I/II 490 Assessing the maximum
tolerated dose (MTD) or
recommended phase II dose

Combination treatment
had modest antitumor
activity

NCT02460224 [87]

Advanced
malignancies

Cemiplimab+
REGN3767

Phase I 333 Initial safety, PK, and efficacy
from the dose escalation
study of combination
treatment

The safety profile of
REGN3767 ± cemiplimab
was generally tolerable;
PK was linear

NCT03005782 [90]

N: Number of participants (actual/estimated enrollment) in the clinical study; PFS: Progression-free survival; pCR: Pathologic complete response; ORR:
Overall response rate; CR: Complete response; PR: Partial response; PK: Pharmacokinetics; PD: Pharmacodynamics.

tumors, SCLC, and DLBCL that met the expansion criteria
(NCT03365791) [91].

Discussion
The blockage of immune checkpoints to treat cancer has
greatly improved the prognosis of cancer patients. The use
of ICIs, especially regarding their combination therapy, has
been extensively studied in clinical (Figure 2) and preclini-
cal settings with encouraging results in the cancers described
above (Tables 1 and 2). Although dual blockade has shown
promising therapeutic effects in many tumor models, such as
melanoma, ATC, and others [72, 76, 86–88], there are still issues
that need to be addressed, such as the low response rate of
some tumors to this therapy, which is regarded as the least
immunogenic [92]. In addition, the clinical benefit of the combi-
nation came at the expense of an increased incidence of autoim-
mune toxicity [93]. AEs are very common, such as fatigue,
nausea, gastrointestinal disorders, and skin disorders, although
severe AEs are rare [87–89]. Furthermore, the types and doses
of the tested drugs were limited, and several combinations of

relatlimab, nivolumab, efti, pembrolizumab, ieramilimab, spar-
talizumab, cemiplimab, and tebotelimab were assessed with
some doses in clinical applications [72, 76–78, 81, 87, 88, 91].
Other potential combinations may need to be evaluated. Finally,
although the overall number of studies is large, there have been
few large-scale and systematic studies; thus, more research is
required to support this combination therapy. Overall, the com-
bination of PD-1 and LAG-3 blockers is very promising, but more
extensive and in-depth research is needed to determine the best
drug type and dose combination, improve the response rate of
patients, and reduce TRAEs.

Although the combination therapy is promising, there are
still many challenges. Combination therapy is more effective
than monotherapy, but the ORR is still not high. The toxicity
of combination therapy is not significantly increased compared
to monotherapy, but AEs remain a thorny problem. In subse-
quent studies, the selection of appropriate combination drugs
and dosages in different tumors is also a major challenge. The
addition of anti-LAG-3 alleviates anti-PD-1 resistance to some
extent, but resistance still exists. In recent years, some schol-
ars have put forward new ideas. Patients who are refractory
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to anti-PD-1 inhibition or anti-CTLA-4 antibody have shown
clinically meaningful activity when given anti-LAG-3 antibod-
ies, which suggests nonoverlapping mechanisms of antitumor
immune activity. It is significant to know whether anti-CTLA-4
also has efficacy in patients who had disease progression while
receiving anti-PD-1 plus anti-LAG-3. Unfortunately, the early
data suggest that tumors are unlikely to respond to CTLA-4-
targeted therapy when they are refractory to anti-PD-1 inhibi-
tion and anti-LAG-3 antibody, more study is still needed [94].

In addition, although there have been many preclinical or
clinical studies of immunotherapy and combination therapy of
immunotherapy, only melanoma and NSCLC have made some
progress, and the effect of other tumors is still controver-
sial, especially in sarcomas. And the current clinical drugs are
mainly monotherapy, the FDA has approved the combination of
nivolumab and relatlimab for melanoma, but further research
is still needed for other tumors.

At present, there are still differences in the view of clinical
application. Although some patients have been relieved, many
patients still cannot benefit from it. At the same time, clinical
application faces the challenges of serious AEs, drug resistance,
and high medical costs, and predictive biomarkers of response
to immunotherapy including PD-L1 require further research.
Combinations require large cohort studies to address significant
clinical validations. These challenges are the knowledge gaps of
combinations of immunotherapy, the treatment strategy may
be moving in the direction of solving these problems. Fortu-
nately, there are a number of ongoing clinical trials evaluat-
ing the efficacy and safety of other combined PD-1 and LAG-3
antitumor therapies, these problems are expected to be resolved
within five years.

Our work also has some limitations. For example, we did not
explore in detail the molecular mechanisms of the combination
and the mechanisms of drug resistance, the list of articles is not
comprehensive on the combination application, and the studies
covered in the article may also have a publication bias.

Conclusion
Ultimately, the use of PD-1 and LAG-3 blockers has notably
improved response and survival rates for numerous types of
cancer. Nevertheless, frequent AEs were observed. Additional
research may be necessary to enhance patient response rates,
minimize TRAEs, and determine the most effective drug type
and dosage combination.
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